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ABSTRACT

Today’s vehicles have myriad user interfaces, from those
related to the moment-to-moment control of the vehicle,
to those that allow the consumption of information and
entertainment. The bulk of the research in this domain is re-
lated to manual driving. With recent advances in automated
vehicles, there is an increased attention to user interactions
as they relate to automated vehicles. In exploring human-
machine interaction for both manual and automated driving,
a key issue has been how to create safe in-vehicle interac-
tions that assist the driver in completing the driving task,
as well as to allow drivers to accomplish various non-driving
tasks. In automated vehicles, human-machine interactions
will increasingly allow users to reclaim their time, so that
they can spend time on non-driving tasks. Given that it is
unlikely that most vehicles will be fully automated in the
near future, there are also significant efforts to understand
how to help the driver switch between different modes of
automation. This paper provides a review of these areas of
research, as well as recommendations for future work.

Andrew L. Kun (2018), “Human-Machine Interaction for Vehicles: Review and
Outlook”, Foundations and TrendsR© in Human-Computer Interaction: Vol. 11, No.
4, pp 201–293. DOI: 10.1561/1100000069.



1
Introduction

Road vehicles, from cars, to buses, to trucks, are an inseparable part
of modern life. People use cars and buses to commute to work, go
shopping, and visit vacation spots. They use trucks to transport goods
over long distances, deliver packages to a customer’s doorstep, and to
provide a mobile base for electricians, plumbers, and first responders.
It is not surprising then that industry, academia, and government have
been spending a considerable amount of effort to create road vehicles
that are safe, efficient, pleasant to drive, and can help us to effectively
accomplish different tasks. Much of this effort is focused on problems
such as how to design brakes that can halt the vehicle quickly, and how
to design fuel-efficient engines. In this paper, we explore the efforts to
design in-vehicle user interfaces.

User interfaces in vehicles have gone through a significant trans-
formation since the invention of the automobile in 1886 by Karl Benz
(Figure 1.1). Akamatsu and colleagues document this transformation
(Akamatsu et al., 2013): early vehicles only provided interfaces that
allowed steering and braking; instrument clusters appeared in the 1920s;
by the 1980s navigation systems began to appear in vehicles; and start-
ing with the 1990s brought-in devices, primarily cell phones (and later
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Figure 1.1: Human-machine interaction for vehicles has become more complicated
over the years. On the left is the Benz’s 1886 Patent Motorwagen, the world’s
first automobile (image by DaimlerChrysler AG, CC-BY-SA-3.0, via Wikimedia
Commons). On the right is the interior of a 2017 Opel. The operator of the Benz
interacted with the vehicle through inputs to control lateral and longitudinal position.
The 2017 vehicle has myriad displays and inputs.

smartphones), became a major presence in vehicles. The drastic trans-
formation of in-vehicle user interfaces is also documented by Kern and
Schmidt who compared two vehicles from the same manufacturer, one
from 1954 and another from 2007 – the newer vehicle had 113 in-vehicle
devices, which is almost four times more than the older vehicle (Kern
and Schmidt, 2009). In general, today’s vehicles have myriad functions,
and related user interfaces. These can be quite confusing to the driver
– this is such a significant problem that since 2015 there is a website
dedicated to explaining to consumers which safety technologies are
available in their vehicles, and how to use these technologies, including
how to use their user interfaces (www.mycardoeswhat.org).

In this paper we focus on discussing work related to modern in-
vehicle user interfaces. The bulk of this work in the recent past and
the present is related to manual driving – the case when the driver’s
primary task is the control of the vehicle, and all other activities in the
vehicle, such as interacting with a navigation system, or communicating
with remote conversants, are considered secondary tasks. In exploring
user interfaces for manual driving a key issue has been assessing the
effects of the interfaces on driving safety. Very frequently this is done
in the context of an application, such as navigation, entertainment, or

www.mycardoeswhat.org
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communication. In this paper we will review key findings from this line
of work.

Yet another topic that has received attention is the user experience
(UX) of in-vehicle user interfaces. This type of work is aimed both at the
driver, as well as at passengers who have become more frequent subjects
of exploration in recent times. This is especially true with the advent
of automated vehicles, given that all occupants of highly automated
vehicles will be passengers for at least part of the journey. And, with
automated vehicles there is increasing attention to user interactions
for work and play (Kun et al., 2016). Given that it is unlikely that
most vehicles will be fully automated in the near future, there are also
significant efforts to understand how to help the driver switch between
different modes of automation. This paper will review work in all of
these areas, and it will provide recommendations for future research.



2
Methods for Exploring Human-Machine

Interaction for Driving

Up to the present time, manual driving has been the primary focus of
the research, development, and regulation of in-vehicle user interfaces.
The situation is now changing, because the automotive community is
increasingly working on issues related to automated vehicles (Kun et al.,
2016). Still, manual driving is by far the dominant form of driving on
today’s roads. Calvert and colleagues estimate that the share of vehicles
with automation will start to increase significantly from 2020 (Calvert
et al., 2017). However, their estimate is that in 2020 only about 5%
of the vehicles on the road will have adaptive cruise control, and less
than 1% will have both ACC and some form of lane keeping assistance.
Furthermore, they expect that manually-driven vehicles will be present
on roads for decades, even as the number of automated vehicles increases.
Luettel and colleagues also make the argument that in the near future
the use of automation might have to be limited to highly-structured
environments (Luettel et al., 2012). Thus, even for vehicles that are
equipped with automation technology, manual operation will likely be
required in order to handle driving in construction sites, and on road
segments with poor lane markings. Due to the fact that manually-
driven vehicles greatly outnumber vehicles with automation, and that

205
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this balance is expected to change only slowly, manual driving remains
the focus of much of the research on human-machine interaction for
vehicles.

In manual driving a human operator – the driver – is responsible
for performing all of the real-time functions of the dynamic driving
task. According to the widely-accepted J3016 standard of the Society
of Automotive Engineers (SAE), these functions include controlling the
longitudinal and lateral position of the vehicle, monitoring the envi-
ronment, responding to objects and events, planning maneuvers, and
enhancing conspicuity (SAE On-Road Automated Vehicle Standards
Committee, 2016). Note that systems such as electronic stability con-
trol, or lane keeping assistance, might provide momentary support to
the driver during manual driving. However, the SAE J3016 standard
considers these to be brief interventions – the sustained effort of driving
is the responsibility of the human operator.

As we explore the use of in-vehicle devices during manual driving, as
well as automated driving, the most important issue is safety. After all,
crashes, including those with fatalities, are far too common around the
world. Our goal with in-vehicle devices should be to reduce the rate of
crashes, and ideally to eliminate them. Thus, some of the questions we
ask are “can the driver safely control their vehicle while operating this
in-vehicle device?” and “how is safety affected by the driving context?”
The first AutomotiveUI conference in 2009 was held in Essen, in the
Ruhr region of Germany. In the early 1900s this region was a center of
coal production. Albrecht Schmidt, the co-chair of the 2009 conference,
drew an interesting parallel between the public perceptions of coal
mining in the early 1900s, and those of driving in the early 2000s
(Schmidt et al., 2010). He pointed out that in the early 1900s coal
mining was a difficult and dangerous job. Severe, and even fatal, injuries
were a common occurrence, and the public accepted them as a necessary
cost of conducting business. By 2009 mining had become significantly
safer, and the public would not have accepted the unsafe conditions
of early 1900s mines. However, argued Schmidt, even in the early 21st

century we do accept the stunningly high number of fatalities related to
driving. According to data in the Fatality Analysis Reporting System
(FARS), operated by the National Highway Traffic Safety Administration
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(NHTSA), in 2014 there were over 32,000 fatalities in the US related to
crashes (from drivers, to passengers, to pedestrians); NHTSA estimates
that the number of fatalities climbed to over 37,000 in 2016 (National
Highway Traffic Safety Administration, 2017a). Thus, approximately 1
in 10,000 inhabitants of the US can expect to perish in a crash-related
incident annually. In the 28 countries of the European Union around
26,000 people (approximately 1 in 20,000) lost their lives in 2014 in
traffic-related incidents (European Commission, 2016). In a 2002 article,
Nantulya and Reich pointed out that in some developing countries the
situation was even worse (Nantulya and Reich, 2002). And in 2012, road
traffic injuries were the leading cause of death globally among people
15–24 year old (World Health Organization, 2015). In another 50 or 100
years, argued Schmidt, we might look back at these numbers and ask,
how could we have allowed so many deaths on our roads?

Of course, there has been much progress in improving driving safety
over the years; for example, as Sivak and Schoettle point out, over
the 50-year period between 1958 and 2008, the fatality rate in the US
decreased by 40% (Sivak and Schoettle, 2011). This decrease was likely
due to a combination of factors, including the introduction of passive-
safety measures (e.g. airbags), active-safety measures (e.g. anti-lock
brakes), and policy changes (e.g. requiring child restraints). And, all
over the world, there are national and international initiatives, such
as Vision Zero (Tingvall and Haworth, 1999), that aim to completely
eliminate traffic fatalities.

Yet, we know that human-machine interaction for vehicles can have
a negative impact on safety. Much of the current and recent work in this
field is related to the fact that drivers are often engaged with secondary
tasks while driving. This engagement is driven both by the increase in
built-in devices in modern vehicles (Kern and Schmidt, 2009), as well as
with the increase in brought-in devices, which in 2018 means primarily
smartphones. The well-known 100-car Naturalistic Driving Study re-
viewed causes of inattention for 9,125 cases of crashes, near-crashes, and
incidents in passenger cars (Neale et al., 2005). This review showed that
in just over 670 of these cases drivers were engaged in a secondary task
on a brought-in wireless device (most commonly a cell phone). Hanowski
and colleagues found similar evidence for drivers of long-haul trucks, who
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also reached for cell phones, dialed numbers, and talked to remote con-
versants (Hanowski et al., 2005). More recently Dingus and colleagues
used the SHRP-2 database of naturalistic driving that followed drivers in
their personal vehicles (Dingus et al., 2015). They found that a crash is
3.6 times more likely when the driver is using a cell phone, compared to
the case when the driver is focused on the primary driving task (Dingus
et al., 2016). Guo and colleagues found that cell phone use increases
the odds ratio of a crash across all driver age groups (Guo et al., 2016).

Thus, a significant impetus for research on automotive human-
machine interaction has been the need to further improve driving safety.
This safety-related research has two main thrusts. First, researchers
have been working towards understanding the driving task, and the
influences of various aspects of context on the safety of driving. Second,
a great deal of effort has been put into improving the safety of specific
tasks related to driving, and for specific users.

The exploration of human-machine interaction and driving very
often uses Michon’s 3-level hierarchy of driving (Michon, 1985). The
highest level in the hierarchy is the strategic level, where the driver
generates general plans, such as the desired trip destination. The next
level is maneuvering, which is concerned with directing the vehicle such
that the strategic goals are supported, for example by taking a turn
at an intersection, or changing lanes in preparation for the turn at the
intersection. The lowest level of the hierarchy is the control level, which
is concerned with the constant lateral and longitudinal control of the
vehicle. Drivers are in charge of all tasks, at three different levels of
granularity: from strategic planning of the entire trip that lasts many
minutes, to planning and executing maneuvers such as changing lanes,
that last several seconds, and all the way down to millisecond-level
control of the vehicle. Consequently, for manual driving the exploration
of in-vehicle interfaces also focuses on all three of these levels. Much of
our current understanding of how drivers interleave the primary driving
task and possible secondary tasks is based on the work of Wickens
(Wickens, 2002). He argues that humans use multiple mental resources
to interact with their environment; for example visual and auditory
inputs are handled by different resources, as are manual and verbal
responses. This insight is important, because it means that not all
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concurrent tasks will have the same effect on drivers. For example,
an auditory secondary task might have less impact on the ability of
the driver to maintain lane position, than a visual task that requires
frequent gazes away from the road.

The interaction of drivers with their vehicles, with in-vehicle devices,
and the effects of context on driving are complex. Thus, we often use
proxy measures to assess how interactions with an in-vehicle device
might affect safety. For example, we can compare the driver’s visual
attention to the road with and without the presence of an in-vehicle
device; if the presence of the device reduces the driver’s visual attention
to the road, we can conclude that using the device might increase the
risk of a crash. This example also tells us what our studies need to focus
on: we need an understanding of what drivers normally do when they
are not distracted, and we also need to understand the mechanisms and
effects of distraction when drivers are using an in-vehicle device.

When researchers explore automated driving, they often use the same
methods that we will discuss below. This is not surprising, since very
often researchers explore automated driving that is not fully automated,
and thus the driver has a role to play. This role might be to observe the
traffic situation, or it might be to take over driving responsibilities at
the request of the automation. Either way, whenever there is a need to
assess how well the driver can handle a driving-related task in a vehicle
with automation, the same methods come into play as when exploring
manual driving.

Now that we have outlined our problem space – manual driving,
as well as automated driving, consisting of tasks at three hierarchical
levels, where safety is a primary concern, and where the driver brings
to bear multiple mental resources to safely maneuver their vehicle while
engaging in secondary tasks – we can take a closer look at the work in
this area.

2.1 Measures to assess manual driving

To experimentally assess the impact of interactions with in-vehicle de-
vices, we most often use driving performance measures. These measures
assess the performance of the driver on tasks related to the three levels of
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Michon’s hierarchy, most often on the lowest (control) level. In general,
worse performance on any of these tasks indicates reduced driving safety.

Tightly related to performance measures are measures related to
eye movement, which inform us about where the driver is looking while
operating a vehicle. Obviously, the less the driver looks away from road,
the safer the drive will be; however, it is not just the overall time spent
looking at the road ahead that matters – details of visual behavior also
play an important role in allowing for safe driving.

Driving is also evaluated from the perspective of cognitive or mental
workload. While there is no generally agreed-upon definition for cogni-
tive or mental workload (Mehler et al., 2012b), we will use the working
definition that it represents the portion of cognitive resources devoted
to completing a set of tasks. This definition is close to that of Young and
Stanton, who argue that “the mental workload of a task represents the
level of attentional resources required to meet both objective and sub-
jective performance criteria, which may be mediated by task demands,
external support, and past experience” (Young and Stanton, 2001).
We expect that the driving task will use certain cognitive resources;
additionally, if the driver is engaged in a secondary task this will also
require cognitive resources. If the totality of resources being used for
driving and secondary tasks starts to exceed the available resources, the
driver might not be able to safely control their vehicle. Researchers use
performance-, physiological-, and subjective measures to assess the level
of workload. These measures are used as relative measures, which allow
us to compare the effects of two experimental conditions on driving.
In contrast, we are always in search of “absolute” measures that can
provide a relationship between the use of an in-vehicle device, and/or a
particular driving context on the one hand, and crash risk on the other.

2.1.1 Performance measures of driving

The majority of driving performance measures assess the driver’s abilities
at the lowest level of Michon’s hierarchy, that is their ability to control
the lateral and longitudinal position of the vehicle with high temporal
granularity. In this section we discuss a number of measures that are
commonly used.
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Number of collisions

Ultimately, the most basic driving performance measure is the driver’s
ability to avoid a collision. This requires both lateral and longitudinal
control. In driving simulator-based studies researchers can count the
number of collisions during a simulated drive. As driving performance
decreases, perhaps because there is a distracting in-vehicle device, the
number of collisions increases. Nass and colleagues used this measure to
explore spoken interactions between drivers and in-vehicle devices (Nass
et al., 2005). They found that matching the emotion of the driver and the
device resulted in fewer collisions than mismatching the emotions. In a
driving simulator-based experiment Chisholm and colleagues found that
collisions were more likely when drivers engaged in a complicated task
with a music player, than in cases when there was no interaction with
the music player, or when the interactions were simple (Chisholm et al.,
2008). In another simulator-based study, Kass and colleagues found that
drivers involved in cell phone conversations were involved in more colli-
sions than drivers who were not distracted in this way (Kass et al., 2007).

Yet, the number of collisions normalized by distance travelled is
relatively low. For example, NTHSA reported that in 2015, on average,
1.04 fatal crashes occurred for every 100 million miles driven, while
the rate of all crashes was 203 per 100 million miles driven (National
Highway Traffic Safety Administration, 2017b). We are grateful for
this low normalized number of crashes and fatalities on the road. (The
total number of fatalities is still unacceptably high, since people drive a
great deal.) But, the rate of collisions is low in most driving simulator
experiments as well. This often makes collisions useless as a relative driv-
ing performance measure. For example, Iqbal and colleagues explored
ways to mediate phone conversations while driving, and they found no
effect of their mediation approach on the number of collisions between
a simulated vehicle and other vehicles, pedestrians, and objects in the
simulation (Iqbal et al., 2011). Medenica and colleagues compared the
effects of three navigation aids on driving (Medenica et al., 2011); for
each of the participants they analyzed thirteen 200-meter-long segments
on 2-lane city streets, each with a turn at the beginning and end, with
ambient traffic, and no unexpected events, and found no collisions. One
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reason why some studies (e.g. Nass et al.) found a larger number of col-
lisions than others (e.g. Medenica et al.) could be the driving simulator
used: Nass et al. used a PlayStation game, while Medenica et al. used a
high-fidelity driving simulator which allows for more accurate control
of the vehicle. Another reason that there are no (or very few) collisions
in many studies is that there are simply no (or very few) opportunities
for collisions; for example, studies where participants have to follow
a lead vehicle with no other traffic present, or studies in which the
participant’s vehicle is the only one on the road.

Nevertheless, it is good practice to report the number of collisions
in a driving simulator study, especially if it is reasonable to expect
that collisions could happen (e.g. because there is ambient traffic). The
number of collisions helps us to draw conclusions about the experi-
mental conditions, as well as about the underlying tasks. For example,
a small number of collisions might indicate that, while the tasks we
are comparing might require different levels of driver attention, all of
them are reasonable to complete while driving. On the other hand, a
high number of collisions might simply indicate that the experimental
environment does not match real-life driving well, and that the results
should be interpreted with this in mind.

Discrete lateral-control-related measures

It is reasonable to assume that if a driver is struggling to keep their
car within the lane markings, there is an increased chance of a collision.
This is the argument for using various discrete lateral control-related
errors as a driving performance measures. For example, Iqbal et al.
(2011) counted instances when the simulated vehicle crossed a lane
marking on either side of the road in order to assess driving performance
under different experimental conditions. Kass et al. (2007) distinguished
between crossing the center lane marking, and the road side marking.
Such a distinction is useful if the drivers can perceive a difference in
the risk associated with the two types of lane-departures; for example,
crossing the center lane marking might result in a collision, but crossing
the road side marking might have no perceptible negative consequences
in a simulator.
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Discrete reaction-time measures

Wickens’ model of multiple resources argues that there are separate
channels for ambient (peripheral) and focal vision. Horrey and Wick-
ens found support for this aspect of the model in their exploration
of in-vehicle devices (Horrey and Wickens, 2004). Their results show
that drivers can maintain lane position while interacting with in-vehicle
devices, because lane position maintenance relies on ambient vision,
while the interaction relies on focal vision. However, when drivers are
faced with two tasks that require focal vision, such as hazard monitoring
and interactions with a device, they have less success. Further, in a
meta-analysis of research on cell phone use while driving (Horrey and
Wickens, 2006), Horrey and Wickens found that measures related to
focal vision, such as the response time to a road event, are the ones
that are primarily affected by cell phone use. In contrast, measures
related to ambient vision, such as lane tracking, were affected less
by cell phone use. This implies that discrete reaction-time measures,
such as reacting to a braking lead vehicle, might be a better predic-
tor of how safe an in-vehicle interaction is than measures related to
lateral lane position. In their simulator-based study Chisholm et al.
collected data on how quickly participants applied the brakes when a
lead vehicle started braking (Chisholm et al., 2008); they found that par-
ticipants’ reaction time increased with the complexity of the secondary
task.

Wu and colleagues strove to go beyond simply measuring reaction
time, and worked on a modeling of pedal applications that would explain
different reaction times. They conducted a driving simulator-based study,
in which participants responded to traffic signal changes (Wu et al.,
2015). The authors identified three classes of pedal application that
resulted in correct application, and one class, pedal errors, that resulted
in incorrect application. They found that drivers under 21 years of age
were more likely to quickly put their foot on the appropriate pedal
(accelerator or brake), than older drivers (ages 26 to 83). They also
found that pedal applications were more likely to be slowed down by
hesitation, or to be incorrect, when the signal appeared closer, indicating
that driving context can have an impact on pedal application.
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Variability of lateral lane position

Collisions happen infrequently even in simulated driving. Similarly, in
many experiments there are few lateral-control-related events to count,
or reaction-time events to evaluate. However, even if such events are
infrequent, we can continuously track the variability of lateral lane
position of the vehicle. If the driver is not paying sufficient attention
to the driving task, or if the totality of the driving task and some sec-
ondary task is very challenging, lane position variability might increase
compared to those instances when the driver is fully focused on the
primary task of driving. Importantly, as Allen et al. point out, increased
standard deviation of lane position can increase the probability of lane
departure, which can presumably result in an increased probability of
collisions (Allen et al., 1996).

In a driving simulator-based study Medenica and Kun showed that
lane position variance is significantly higher when the driver operates
a police radio manually, than when they operate it using a speech
interface (Medenica and Kun, 2007). This makes sense intuitively: the
manual interaction required the driver to look away from the road and
onto the radio, and it required them to take their hand off the steering
wheel. The combined result was increased lane position variability.
In another simulator-based study Kun and colleagues found that lane
position variance increases when the recognition rate of a speech interface
decreases (Kun et al., 2007): this might indicate that low recognition rate
was distracting to the drivers and this affected their driving performance
negatively. Variability of lane position has been used in a host of
studies successfully identifying the effects of engagement in a secondary
task on driving performance (Engström et al., 2005; Horrey et al.,
2006; Kun et al., 2007; Kun et al., 2013b; Maciej and Vollrath, 2009;
Salvucci et al., 2007; Tsimhoni et al., 2004), although others found
counterintuitive results, where greater engagement in a secondary task
resulted in reduced lane position variability (e.g. Angell et al., 2006;
Becic et al., 2010; Peng et al., 2013).

Of course, variability of lane position depends a great deal on the
driving context, including road geometry. For example, lane position vari-
ability will be larger on a curvy road, where there is a constant need for
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steering, than on a straight road, where less steering is needed. Tsimhoni
and Green compared driving performance on three curvy roads, each
with a different curve radius (582 m, 291 m, and 194 m) (Tsimhoni and
Green, 2001). They found that the standard deviation of lane position
was 75% larger in the 194 m radius curves than on straight roads.

Note that, on straight road segments, some simulated vehicles will
remain in their lane with hardly any steering required from the driver.
In these cases, drivers who look away from the road, and/or manipu-
late in-vehicle devices, might appear to have excellent control of their
vehicles. In order to make driving on straight segments more challeng-
ing, researchers sometimes include wind disturbance – for example
Horrey et al. added wind turbulence (Horrey et al., 2006), while van
der Meulen et al. added a lateral wind disturbance that periodically
changed direction (van der Meulen et al., 2016).

If we wish to assess the impact of an in-vehicle device on driving
under different reasonable circumstances, then the variability of lane
position will be affected by more than just road curvature, and wind
disturbance. For example, Kun and colleagues conducted an experiment
in which one group of participants drove a simulated vehicle in a city
environment while interacting with an in-vehicle device, while another
group drove on a three-lane highway (Kun et al., 2014). Both envi-
ronments presented straight roads, but there were multiple differences
between them, such as the number and width of lanes (one 3.2-meter-
wide lane of traffic in each direction in the city vs. three 3.6 meter
lanes on the highway), travel speed (40 mph city vs. 55 mph highway),
ambient traffic direction (oncoming and following vs. travelling in the
same direction), and the presence of parked vehicles on the side of
the road (yes in the city vs. no on the highway). Kun et al. found
that lane position variability was greater on the highway than in the
city, presumably because drivers were not as concerned with lateral
threats on the highway, and thus they did not try as hard to reduce
lane position variability. Horrey and Wickens found that lane position
variability increased from an urban environment, to straight highway
roads, to curvy highway roads (Horrey and Wickens, 2004).

Variability of lane position can be affected by other factors as well.
For example, participants might drive close to the center of the lane for
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much of a road segment, but move the vehicle to one side in preparation
for a turn at the end of that road segment. This movement in preparation
for the turn will increase the lane position variability for the entire
segment, but it does not indicate poor driving performance. Similarly,
participants might choose different lateral positions for their vehicles
depending on lane markings: for example, on road segments without
markings they might move closer to the outer edge of the road, and
on segments with lane markings they might move closer to the road
center. These movements do not indicate poor driving performance, but
they can contribute to an increased value of calculated variability of
lane position. And of course, if we introduce unexpected events, such
as a pedestrian stepping out between parked vehicles (e.g. Medenica
and Kun, 2007), our participants might swerve to avoid a collision. The
swerving can greatly increase lane position variability, but obviously
does not indicate poor driving.

Variability of steering wheel angle

Drivers maintain the vehicle’s lane position by manipulating the steering
wheel. However, while lane position variability might indicate how well
a driver is able to control the vehicle, the variability of steering wheel
angle might indicate the effort that is needed to maintain good lane
position performance. For example, on a road with both left- and right
curves, steering wheel angle variability will be high because the driver
has to turn the wheel one way and then the other in order to maintain
satisfactory lane position.

Steering wheel angle is readily available on real vehicles, and not
just simulated ones. For example, in an on-road study Solovey and
colleagues recorded steering wheel positions from the controller area
network (CAN) bus of the vehicle, and used this data in different
workload classification algorithms (Solovey et al., 2014).

Evaluating performance at higher levels of Michon’s hierarchy

In the preceding paragraphs, we discussed measures that are related
to the lowest level of Michon’s hierarchy – the control level. Relatively
little work has been done on evaluating performance at higher levels of
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this hierarchy. At the maneuvering level Iqbal et al. (2011) report on
turning errors in their study on mediating phone conversations while
driving: they found that their mediation approach reduced the instances
where drivers made a turning error, compared to the case without
mediation. Kim and Dey also report on turning errors in an exploration
of an augmented reality (AR) navigation aid: they found that their AR
navigation aid reduces the incidence of turning errors, and especially so
for older drivers (Kim and Dey, 2009). Bolton and colleagues similarly
explored turning errors with an AR navigation aid, and found that
drivers made fewer turning errors when they saw landmarks enclosed in
a box, than in the case when they saw conventional distance-to-turn
information (Bolton et al., 2015).

2.1.2 Eye movement measures of driving

Driving is a visual-manual task, and eye movement measures provide
information about the driver’s visual behavior during this task. As
we discuss eye movement measures we rely on definitions found in
the book by Holmquist and colleagues (Holmqvist et al., 2011). Thus,
we define areas of interest (AOIs) as “regions in the stimulus that
[we] are interested gathering data about,” such as the road, or an
in-vehicle device. Also, a glance is “one visit to an AOI, from entry
to exit.”

Percent dwell time (PDT)

Percent dwell time is the relative amount of time spent looking at an
area of interest. It is a common measure to assess how much visual
attention the driver is paying to driving, particularly the road ahead,
and to other in-vehicle tasks. The higher the visual attention to the
road ahead, the more likely it is that the driver can safely control the
vehicle. A number of efforts have used PDT to the road ahead, as well
as to different in-vehicle devices, to assess how distracting those devices
might be to the driver, (e.g. Horrey et al., 2006; Maciej and Vollrath,
2009; Medenica et al., 2011; van der Meulen et al., 2016; Wang et al.,
2010). However, as we pointed out in the discussion about discrete



218 Methods for Exploring Human-Machine Interaction for Driving

reaction time measures, a reduction in PDT on the road ahead will not
always result in significant performance effects. Horrey and Wickens
argue against using PDT, or lane keeping performance measures, in
isolation as a measure of driving safety; instead, the two should be
looked at in conjunction (Horrey et al., 2006).

Total glance duration, and individual glance duration and frequency

Glance duration and frequency has been explored in a number of studies,
and has shown that drivers might tactically adapt to the demands of
different roads, and change how they interact with an in-vehicle device.
Tsimhoni et al. explored address entry using a keyboard while driving
on straight and curvy roads (Tsimhoni et al., 2004). They found that the
total glance duration to complete the address entry task did not change
between straight and curvy roads; however, on curvy roads drivers cast
a larger number of shorter glances at the keyboard and display, while on
straight roads they cast a smaller number of longer glances. Kun et al.
found that drivers cast longer glances at an in-vehicle device on the
highway than on city roads, although they did not find evidence that the
number of glances changed between the two environments (Kun et al.,
2014). This result is in agreement with the findings of Victor et al.; they
also found that mean glance duration away from the road was shorter
when driving conditions were more difficult, but found no evidence that
gaze frequency changes with the change in driving conditions (Victor
et al., 2005).

Gaze dispersion measures

Victor and colleagues asked: which eye-movement measures are sensitive
to changes in the driving task and to changes in a secondary in-vehicle
task (Victor et al., 2005)? They undertook an extensive data collection
effort in which participants engaged in visual and in auditory tasks,
and data was collected both in simulators and on the road. Victor et al.
found that increased demand on the driving task, and on the secondary
task have the same effect: they increase the time participants spend
visually focusing on a narrow area of the road ahead, in contrast to
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scanning the left and right side of the road. This result can be expressed
using a new measure they called percent road center. Similarly, Wang
et al. found that the standard deviation of horizontal gaze position is
a sensitive measure for assessing the level of cognitive demand of a
secondary task in a vehicle (Wang et al., 2014).

Occlusion

Researchers use the occlusion technique to simulate a reduction in visual
attention to the road. This technique employs a system that has two
states. In one state, the participant can see the real or simulated outside
world. In the other state, their vision of the world is occluded, for
example by a head-worn device. The occluded state is the default. The
participant can force the system to remove the occlusion, for example
by pushing a button. The system then transitions to the unocclued
state, and remains in that state for a period of time, after which it
returns to the default, occluded state. In seminal work Senders et al.
found that more complex roads, and/or faster driving, required drivers
to spend more time looking at the road (Senders et al., 1967). In a
simulator experiment Tsimhoni and Green assessed the visual demand
of driving in curves using the occlusion method (Tsimhoni and Green,
1999). Their participants wore occlusion glasses while driving on curvy
roads of different curvature, and pressed a button to allow them to see
the road for 0.5 seconds at a time. The more demanding the driving
task, the more frequently participants pressed the button to be able to
see the road. Both of these experiments (Senders et al., 1967; Tsimhoni
and Green, 1999) used occlusion time: that is the time drivers can
spend without looking at the road and still drive within some safety
limits. More recently Kujala et al. argued that occlusion time is not
an adequate measure for realistic scenarios, because in such scenarios
drivers can control their vehicle’s speed, which in turn affects occlusion
time (slower driving allows drivers to spend relatively less time looking
at the road than fast driving) (Kujala et al., 2016). Thus, Kujala et al.
proposed using occlusion distance to assess the attentional demands of
driving – this is the distance that the driver feels comfortable travelling
without seeing the road.
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2.1.3 Physiological measures of driving

A wide variety of physiological measures have been used to estimate
the cognitive state of a human who is engaged in various types of tasks
(Kramer, 1991), and this is often done from the perspective of Wick-
ens’ multiple resources theory (Wickens, 2002). Here we review three
measures that are frequently used to investigate human-machine inter-
actions in vehicles: electro-dermal activity, heart-rate-related measures,
and pupil diameter.

Measures related to electro-dermal activity and
cardio-vascular activity

Many studies combine data from electro-dermal activity (primarily skin
conductance) and electro-cardiograms (which provides information such
as heart rate, heart rate variability, and inter-beat interval). Thus, we
will combine the discussion of such data.

In one of the best-known papers that deal with physiological sensing
in the car, Healey and Picard explored the use of physiological measure-
ments to assess the driver’s stress (Healey and Picard, 2005). For 24
drivers operating a vehicle on roads in the Boston area, they collected
four types of measurements: electrocardiogram (EKG); electromyogram
(EMG) with electrodes placed on the shoulder; skin conductivity on the
palm of the left hand and on the sole of the left foot; and chest cavity
expansion, which is a measure of respiratory activity. They argue that
of these four types of measurements, skin conductivity and heart rate
measures are best correlated to driver stress. Engström and colleagues
found that skin conductance increased, and inter-beat interval decreased,
when drivers were engaged in a manual-visual task, both in a simulator
and in a real vehicle (Engström et al., 2005). In an on-road study Mehler
and colleagues assessed the workload experienced by drivers who were
also engaged in a verbal secondary task (Mehler et al., 2012a). They
found that skin conductance and heart rate increased with increased
task difficulty. Schneegass and colleagues collected skin conductance
and electrocardiogram data (as well as driving context data) in an
on-road study with 10 participants – their data is publicly available,
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representing a resource for the research community (Schneegass et al.,
2013).

Note that these types of measures work best when we want to observe
changes over relatively long periods of time. For example, Healey and
Picard found that 100 second windows worked well in processing skin
conductance and heart-rate-related signals. A related issue is that, as
Mehler et al. warn, skin conductance has a somewhat long recovery
period – thus, studies might need to present tasks in order of increasing
workload, or allow long-enough recovery periods.

Also note that most (reliable) sensors for electro-dermal activity
and heart-rate are intrusive, as they need to be attached to the subject.
This mostly limits their use to the development phase of an in-vehicle
interface.

Pupil diameter

Numerous studies have shown that pupil diameter increases with an
increased utilization of mental resources – Beatty provides a thorough,
although dated, review of many such studies (Beatty, 1982). This effect
can also be used effectively to assess workload in driving simulator
studies where the driver is engaged in spoken secondary tasks (Heeman
et al., 2013; Kun et al., 2013a; Palinko et al., 2010). A strength of this
method is that it is capable of tracking both longer-term changes (that
occur over several minutes), and rapid changes that occur on the order
of a second or less.

However, studies that rely on pupil diameter must carefully account
for changes due to the pupillary light reflex (Kun et al., 2012; Palinko
and Kun, 2012; Pfleging et al., 2016a), as well as other effects such
as emotional arousal (Wang et al., 2013). This is especially important
because changes in pupil diameter due to the pupillary light reflex can
easily be an order of magnitude larger than changes due to variations in
the use of mental resources. In part because of the pupillary light reflex,
but also due to a number of other issues, pupil diameter measurements
are noisy. Thus, researchers commonly present stimuli to participants
repeatedly, and average the pupillary response.
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2.1.4 Subjective measures of driving

Sinclair defines subjective measures as the results of methods that “use
the people involved in the system that you wish to study as a measuring
instrument” (Sinclair, 1995). For our purposes, the system is a vehicle,
or more specifically some user interface related to the vehicle. We use
subjective measures to assess how difficult some non-driving task is, and
how much it might reduce the ability of the driver to control their vehicle.

Probably the most common subjective measure used to assess driver
interactions with in-vehicle devices is the NASA Task Load Index
(NASA-TLX) test (Hart and Staveland, 1988). NASA-TLX provides
a quantitative estimate of the subjective experience of workload for
participants in an experiment. NASA-TLX can in fact provide a single
numerical value to assess the subjectively experienced workload of a
given task. Pauzié introduced the Driving Activity Load Index (DALI),
which is a modified version of the NASA-TLX, specifically targeting
the driving domain (Pauzié, 2008).

While measures such as NASA-TLX are relatively simple to ad-
minister, researchers often also include even simpler measures. One
common tool when comparing interactions with two (or more) different
devices, is a questionnaire that instructs participants to rank-order the
interactions according to some criterion, such as level of distraction from
driving, or their willingness to engage in the interaction (e.g. (Medenica
et al., 2011)). Such simple approaches can be useful in testing a research
hypothesis – for example, we might hypothesize that drivers are more
willing to interact with one particular in-vehicle device, or that another
device might be perceived as more distracting, and the rank-ordering
will provide an evaluation of such a hypothesis.

Another tool is a questionnaire that instructs participants to indicate
their level of agreement with one or more statements that address a
hypothesis in an experiment. For example, we might ask participants to
indicate their level of agreement with the statement “Interactions with
the device distracted me from the driving task.” Participants indicate
their level of agreement on a multi-point scale – a 5-point scale is often
used, where possible responses are “highly agree,” “agree,” “neutral,”
“disagree,” and “highly disagree.” Such questionnaires are called Likert-
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type questions. Note that this tool is often described as a Likert scale.
However, as Clason and Dormody point out, a Likert scale is a set
of questions, where responses are coded numerically and combined
into a composite score (Clason and Dormody, 1994). The composite
score is treated as an interval measure (Boone Jr and Boone, 2012),
as defined in Stevens’ classification of scales of measurement (Stevens,
1946). In contrast, Likert-type questions are treated as ordinal data,
since the differences between ratings do not translate into identical
intervals, and statistics such as the average are not good representations
of participant responses (for example, the average of “highly agree” and
“highly disagree” should not be treated as “neutral”). The majority of
publications exploring interactions with in-vehicle devices use Likert-
type questions (e.g. (Medenica et al., 2011)) and not Likert scales.

As we use subjective measures in which we ask participants to
express their opinions, we must be careful to avoid, or at least dis-
cuss the possibility of, participant response bias. This bias was clearly
demonstrated in the work Dell and colleagues (Dell et al., 2012). The
authors asked participants to rank-order two technological artifacts.
The artifacts were identical, but the participants were told that the
interviewer developed one, but not the other artifact. The authors found
that participants were about 2.5 times more likely to prefer the artifact
that they believed was developed by the interviewer.

2.1.5 Performance on a secondary task

Drivers routinely engage in secondary tasks, such as changing radio
channels, operating hands-free phones, and interacting with navigation
aids. Performance on a secondary task can provide evidence about the
status of the driver’s mental resources: in many cases, as these resources
are depleted, secondary task performance will worsen.

The secondary task is often a probe task, which is designed specifi-
cally to help us assess the driver’s mental state. An ISO (International
Organization for Standardization) standard probe task is the Detection
Response Task (DRT) (ISO, 2016); the driver has to react to visual or
tactile stimuli presented at random intervals, and equipment tracks the
reaction times and the number of missed stimuli. Slow reaction times,
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and/or many missed stimuli are an indication of depleted cognitive
resources.

2.2 Data sources to assess manual driving

In 2013 the US Federal Highway Administration (FHWA) organized
a workshop to explore the use of different datasets in driving research
(Romo et al., 2014). In exploring manual driving, researchers conduct
experiments in different settings, and collect different types of data.
These include survey data, as well as data from simulators, test tracks,
and from road studies. At the FHWA workshop Chrysler pointed out
(Romo et al., 2014) that we can order these types of data based on
the level of control over experimental variables – surveys provide the
highest level of control, followed by simulators, test track experiments,
and finally on-road studies. High level of control is desirable because
it provides high internal validity: control gives us confidence that our
results are due to differences in treatments and not some other factor
that we failed to account for. However, the high level of control comes
at a cost, because it can reduce external validity – after all, some of
the controls we impose make the in-vehicle tasks less realistic, and thus
the conclusions of our study might not predict what will happen in real
driving.

Burnett makes a similar argument to that of Chrysler; he also
discusses the relationship between the experimental setting and the
types of tasks that participants engage in, as well as the evaluation
methods that are employed with a given experimental setting (Burnett,
2009). For example, he points out that experiments often include both
a driving task and some secondary task. However, in on-road studies,
secondary task engagement depends on the motivation of the driver,
while in simulator-based experiments, it is to a large extent manipulated
by the experimenter.

2.2.1 Simulators

Much of the work in exploring in-vehicle human-machine interaction
has used simulated environments (e.g. (Allen et al., 1996; Becic et
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Figure 2.1: Driving simulators: University of New Hampshire (top left), Texas
Transportation Institute (top right), University of Washington (bottom left, image
by Linda Boyle), Liberty Mutual Research Institute for Safety (bottom right).

al., 2010; Chisholm et al., 2008; Engström et al., 2005; Heeman et
al., 2013; Horrey and Wickens, 2004; Horrey et al., 2006; Iqbal et al.,
2011; Kim and Dey, 2009; Kun et al., 2007; Kun et al., 2014; Kun
et al., 2013b; Medenica and Kun, 2007; Medenica et al., 2011; Nass
et al., 2005; Palinko et al., 2010; Salvucci et al., 2007; Tsimhoni and
Green, 1999; Tsimhoni et al., 2004; Victor et al., 2005)), and the use
of driving simulators has dramatically increased over the years (Boyle
and Lee, 2010). Several representative simulator setups are shown in
Figure 2.1.

Driving simulators have two key characteristics which make them
advantageous for driving studies. First, they are safe environments for
experiments, regardless of road geometry, traffic situation, or distrac-
tions from brought-in devices. Second, in driving simulator studies we
expose multiple participants to identical conditions – this is in contrast
to naturalistic studies, where we observe driving on real roads, and
every event can be unique (Boyle and Lee, 2010). Additionally, the cost
of high-fidelity simulation is dropping, making these tools affordable to
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a wider range of researchers than before (Boyle and Lee, 2010; Burnett,
2009).

Still, different simulators provide different levels of driving realism,
and might be appropriate for different experiments. In fact, sometimes
these environments can be rather simple in order to focus on a particular
aspect of the manual-visual task of driving, such as tracking. For exam-
ple, in their seminal work on the effects of cell phone conversation on
driving performance, Strayer and Johnston employed a pursuit tracking
task; participants used a joystick to move the cursor on a computer
screen such that it is aligned with a moving target (Strayer and Johnston,
2001). The experiment tested the hypothesis that cell phone conversa-
tions with a remote conversant divert the attention of the driver from
the manual-visual task of driving to the verbal communication task. In
spite of the simplicity of the experimental task, the article successfully
provided support for the authors’ hypothesis.

In general, we need to be careful when drawing conclusions based
on results from driving simulator studies. After all, simulators and
real driving differ in many aspects, perhaps most importantly in the
level of perceived and actual risk to the wellbeing of the participants
and people around them. However, driving simulator studies can be
very useful in predicting on-road behavior. For example, Lew et al.
(Lew et al., 2005) found that simulator experiments are predictive of
future driving performance of patients with brain injuries. Wang and
colleagues conducted a study in which participants interacted with an
in-vehicle information system while operating either a simulated or a
real vehicle (Wang et al., 2010). They found that visual attention and
task performance measures were very similar in the two environments,
while this was not the case for driving performance measures, such as
the standard deviation of lane position. Reed and Green instructed
participants to complete a phone task under two conditions: in an
instrumented vehicle on the road, and in a simulated vehicle (Reed and
Green, 1999). On the road they observed decrements in performance
due to the engagement in the secondary phone task; they found that a
driving simulator can also capture these decrements, even though the
absolute values of the different performance measures might be different
on the road and in the simulator.
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2.2.2 Test tracks

Test tracks are environments where we can experiment with real cars
while we retain control over variables such as traffic and road geometry.
The work of Lee and colleagues provides an example for the utility
of test tracks (Lee et al., 2016). The authors explored the negative
effects of drowsiness on driving performance. The experiment assessed
the effects of night-shift work on measures of drowsiness and driving
performance. In this case a simulator study could have easily provided
safety: drowsy drivers cannot hurt themselves, or others, in simulated
crashes. However, using a simulator to explore drowsy driving would
reduce the external validity of the results: after all, it seems reasonable
to assume that drivers would be less concerned with their safety in a
simulator, and would thus respond to drowsiness differently. Conducting
the experiment on a test track is a reasonable compromise: the driving
is real, and should thus result in realistic driver behaviors, yet there
are no other drivers to endanger, and the experimenter is charged with
keeping the participant safe. Similarly, Noble and colleagues conducted
a test track study to explore in-vehicle displays to guide drivers through
stop-sign-controlled intersections (Noble et al., 2016), while Tidwell
et al. conducted a test track study to explore the effectiveness of collision
warnings for drivers of heavy vehicles (Tidwell et al., 2015). In both
studies, the realism of driving a vehicle was an important factor in
assessing how drivers will react to in-vehicle audio-visual instructions
or warnings. This realism meant that participants experienced the
actual dynamics of a vehicle (and not just a simulation), and that they
perceived the possibility of a crash.

Figure 2.2 shows the test track at the Texas Transportation Institute,
which was created on the site of an old airfield. The track has long
straight sections, and allows for testing vehicles which travel at highway
speeds.

2.2.3 Road studies

On-road experiments offer realism at the cost of giving up control over
many aspects of driving context. Furthermore, researchers must be
extremely careful not to expose participants in on-road experiments to
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unsafe situations, which limits their ability to test different scenarios.
On-road studies include naturalistic studies where one or many vehicles
are equipped with instruments and driver activity and context are
tracked (Belyusar et al., 2016; Dingus et al., 2016; Dingus et al., 2015;
Fröhlich et al., 2011; Guo et al., 2016; Hanowski et al., 2005; Miller and
Kun, 2013; Neale et al., 2005). In recent work Belyusar and colleagues
explored drivers’ gazes on roadside billboards (Belyusar et al., 2016).
Their work addresses a question that would be difficult, if not impossible,
to adequately address in a driving simulator study. One reason is that in
a driving simulator drivers might be more inclined to look away from the
road since there would be no threat of physical harm to them or others.
A more mundane concern is that driving simulators have relatively
low-resolution displays, which would not match the visual detail of a
real roadside billboard; thus drivers would not be able to make out
details of the billboard from the same distance as they would in a road
study. Wilfinger and colleagues designed a mobile phone-based tool that
allows collecting data during road studies, including information from
the vehicle’s OBD-II port, such as acceleration and RPM readings, as
well as environmental data from the phone, such as light and sound
levels (Wilfinger et al., 2013).

We can also consider epidemiological studies to be on-road studies –
these studies use real-world data to relate some aspect of the driving
context (such as the age, gender, or occupation of the driver, the equip-
ment of the vehicle, or road geometry), and outcomes such as crashes
or injuries. For example, exploring data from the Quebec province of
Canada, a study revealed that between 2000 and 2008 there were 849
collisions involving an emergency vehicle in that province, and that
40% of these collisions were due to distraction or inattention (Pignatelli
et al., 2014).

2.3 Data sources to assess automated driving

Interactions related to automated vehicles are often explored in sim-
ulators (Koo et al., 2015; Merat et al., 2014; Mok et al., 2015; Mok
et al., 2017; van der Meulen et al., 2016), however a number of studies
have used on-road vehicles. Seppelt and colleagues explore in-vehicle
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Figure 2.3: The RADDS platform at Stanford was used to explore automated
driving — the vehicle’s steering wheel is on the right, and the driver is hidden from
the participant by a partition. This setup encourages participants to imagine, or
even believe, that the car is moving under the control of a machine agent.

interaction challenges in a naturalistic study of Tesla drivers (Seppelt
et al., 2017). Llaneras et al. used test-bed vehicles on a closed track
to explore driver behaviors when using both ACC and lane-centering
(Llaneras et al., 2013). Biondi and colleagues conducted an on-road
study in which 10 participants drove a vehicle that was equipped with
both ACC and a lane keeping assistant system (Biondi et al., 2017).

Researchers who do not have access to real vehicles with automation
features turn to other options. Thus, the RRADS platform (Figure 2.3)
(Baltodano et al., 2015b; Baltodano et al., 2015a), as well as the newer
Marionette platform (Wang et al., 2017), use a Wizard-of-Oz setup, in
which the human driver is hidden from the participant by a partition. In
a simpler setup, Krome et al. experimented with passengers who were
chauffeured by a researcher (Figure 2.4) (Krome et al., 2016). Their
argument is that we need to understand the commuting experience of
a passenger, and this can be done without pretending that they are
riding in an automated vehicle.
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Figure 2.4: Krome conducted an experiment with passengers driven to work and
back to learn about passenger behaviors that might be relevant for future automated
vehicles. Images by Sven Krome.

Another innovative approach to finding data sources is that of
Brown and Laurier (Brown and Laurier, 2017) – in their research
exploring social interactions on the road, the authors used videos posted
online about people’s experiences with automated vehicles. While such
videos provide only a limited insight into real driving, they can provide
valuable lessons – for example, the authors found evidence that the
actions of automated vehicles can lead to confusion for human drivers
in surrounding vehicles.

2.4 Participant populations

Even a cursory review of papers in various human-machine interaction-
related publications reveals that too often the majority of participants
in studies are young, male college students (Barkhuus and Rode, 2007).
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Furthermore, given that most papers originate in western countries, the
participant population is further narrowed. However, driving is affected
by many participant characteristics, such as gender, age, cognitive
impairment, and culture. For example, D’Ambrosio and colleagues
explored perceived self-regulation for older drivers, and found that older
women report to be more likely than older men to avoid driving at night,
or on highways, or in heavy traffic (D’Ambrosio et al., 2008). Reimer
et al. report that in a driving simulator study individuals diagnosed
with high functioning autism shifted their visual attention away from
the road when they had to deal with a secondary task in addition to
driving (Reimer et al., 2013). Wang et al. report on differences between
Swedish and Chinese drivers in the type of auditory warnings they
might find useful; the authors relate their results to the driving cultures
of the two countries (Wang et al., 2016). And Jeon and colleagues
report that drivers in Austria, Korea, and the USA differ in their
concerns about vehicle-to-vehicle (V2V) communications, with Korean
and US drivers most concerned about safety, while Austrian drivers
most concerned about privacy and data security (Jeon et al., 2012).
Thus, careful examination of in-vehicle human-machine interaction has
to take into account different participant populations.

2.5 Standardization efforts and guides

Standardization of methods can help members of a research community
to replicate and compare results between studies. In his 2012 Automo-
tiveUI conference keynote address, Paul Green made a strong argument
for the need for a standards document to address the definitions of
various measures used by this research community (Green, 2012). This
document is now available as SAE J2944 Recommended Practice, Op-
erational Definitions of Driving Performance Measures and Statistics
(SAE, 2015). Green’s keynote also lists a number of other relevant ISO
and US Department of Transportation (US DOT) documents (Green,
2012).



3
Focus Areas in Research on Human-Machine

Interaction for Manual Driving

Over the last several decades manual driving research has primarily
focused on three general areas. The first one is safety – extensive work
has been done to understand the driving task, how this task interacts
with other in-vehicle tasks, and how driving can be made safer. The
second area is that of developing new or improved user interfaces for
in-vehicle devices, such as speech-based or gesture-based interfaces.
Finally, the third area is that of in-vehicle applications, which means
bringing new or improved functionality into the vehicle, for example in
the form of new types of entertainment, or new tools for completing a
task that is related to driving. And since safety is always of the highest
priority in driving, ultimately new interfaces and applications must also
be explored through the lens of safety. In addition to safety, new user
interfaces, and in-vehicle applications, in this section we will also discuss
increasingly important work on user experience (UX), and passengers.

3.1 HMI and driving safety

The work related to driving safety has three major thrusts. One is
to improve our understanding of the driving task, and how humans
can successfully perform it. The second is to understand the effects of
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secondary in-vehicle tasks on driving safety. Finally, the third one is to
improve driving safety for specific users, or for specific applications.

3.1.1 Understanding manual driving

How do people complete the manual-visual task of driving? What are
the components of this task, and how are they supported by driver
capabilities and resources? How does attention influence driving, and
which distractions can be detrimental to the driving task? These are
some of the questions that researchers have asked over the years as they
try to understand driving. Many of the examples discussed in section 2
address these questions.

3.1.2 Understanding the effects of secondary tasks

Interaction with in-vehicle devices is a significant safety concern, espe-
cially with the proliferation of brought-in devices. In one of the first
studies to explore in-vehicle interactions with a brought-in music player,
Salvucci and colleagues found that interactions with the device, such
as selecting media, affected both lateral and longitudinal measures of
driving performance (Salvucci et al., 2007). Kun and colleagues explored
how interactions with a music player affect visual behavior and lane
keeping in different driving environments (Kun et al., 2014). They found
that drivers made shorter glances at the music player in a city environ-
ment, than on a highway, perhaps because they felt that long glances
away from the road are more risky in the city than on the highway.

3.1.3 Improving safety

Researchers and practitioners who are engaged in exploring and develop-
ing in-vehicle user interfaces have focused on improving driving safety in
two ways. First, a great deal of effort has been put into improving safety
for different applications, interaction modalities, and users. Brumby
and colleagues found that speech interaction can lead to safer driving
than manual-visual interaction (Figure 3.1), but that drivers who are in
a hurry to complete a task might choose the faster but less safe manual-
visual interaction (Brumby et al., 2011). Janssen et al. experimented
with using audio cues to inform a remote conversant about how busy
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Figure 3.1: Manual-visual interaction with a mobile phone in the experiment by
Brumby and colleagues (Brumby et al., 2011) (photo by Duncan Brumby).

the driver is at a given time, with the hope that this understanding will
bring about changes in dialogue behavior and ultimately safer driving;
their results indicate that in many cases this approach can be expected
to have modest positive effects (Janssen et al., 2014).

The availability of new technologies has encouraged researchers and
developers to explore creating new approaches to improving safety. For
example, Steinberger and colleagues proposed using in-vehicle games
(gamification) to improve safety (Steinberger et al., 2015). One of their
concepts is shown in Figure 3.2 – here the proposed system would
use augmented reality to display an item that the driver’s vehicle is
transporting. The driver needs to leave enough room for the virtual
item, such that it does not hit a lead vehicle. The safety benefit is an
increased following distance.

Furthermore, standardization efforts and guides attempt to provide
designers with design practices that lead to safe in-vehicle interactions.
For example, in the realm of assessing distractions, the ISO standard-
ized the Detection Response Task (DRT) (ISO, 2016), as well as the
Simulated Lane Change Task (LCT) (ISO, 2010), both of which are
widely used by researchers. The US National Highway Traffic Safety
Administration (NHTSA) has issued guidelines for evaluating the dis-
tractions caused by built-in electronic devices in vehicles (National
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Figure 3.2: Gamification for safety (image by Ronald Schroeter and Verena Lindner):
the system displays a virtual item in front of the car, and this item needs to fit in
the space between the driver’s car and the one they are following. To fit the item the
driver has to leave adequate room between the vehicles, which is the intended safety
benefit of the game.

Highway Traffic Safety Administration, 2012), as well brought-in de-
vices (National Highway Traffic Safety Administration, 2016c). NHTSA
also issued a human factors guidance document (Campbell et al., 2016),
which covers a wide range of topics, from visual interfaces, to haptic
interfaces, to auditory interfaces, to system integration issues. This doc-
ument also includes valuable references to a host of relevant standards.

3.2 In-vehicle interaction techniques

As technological tools have become available, researchers and developers
have been eager to put them to test in providing novel interaction
modalities in the vehicle.
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Figure 3.3: Project54 created a unique voice actuated computer system which
integrated the control of in-cruiser devices such as lights and siren, radar, and video
(Kun et al., 2004; Kun et al., 2003). The system also allowed performing voice driven
data queries.

3.2.1 Speech interaction

In-vehicle speech interaction has received a great deal of attention,
because of its promise to allow the driver to focus their visual resources
on the driving task. The Project54 system (Figure 3.3) integrated devices
in first responder vehicles into a single system that could be operated
using a speech interface (Kun et al., 2004; Kun et al., 2003). The system
provided a user-initiative dialogue system – the user had to initiate
actions by pressing and holding a push-to-talk button, issuing a voice
command from a pre-coded grammar, and finally releasing the button.
Others also explored speech interfaces for first responders. For example,
in a driving simulator-based study by Mitsopoulos-Rubins et al. police
officers rated speech interfaces as easier to use than manual-visual
interfaces (Mitsopoulos-Rubens et al., 2013).

Speech interfaces are gaining prominence in the consumer world – in
2018 many new vehicles provide a voice interface to various functions,
and smartphones also respond to voice commands in vehicles. Most
systems still implement user-initiative dialogues – the system rarely, if
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ever, makes an utterance without being prompted. However, modern
systems use natural speech interaction and users are not required to
memorize a set of commands (Large et al., 2017). Lo and Green review
some recently developed in-vehicle speech systems, as well as relevant
standards, and suggest tools for design and testing (Lo and Green,
2013).

Speech is not only used in dialogue-based systems. Jeon and col-
leagues explored the use of enhanced auditory menu cues (Jeon et al.,
2015): “spearcons” which are sped-up speech cues, and “spindex” which
are speech-based index cues (in this case the pronunciation of the first
letter of an item). In a driving simulator study, participants were given
a secondary song-selection task. The list of songs was presented either
only visually, or both visually and with auditory cues. The use of au-
ditory cues improved both the driving performance and the selection
speed, compared to using only the visual presentation.

Of course, in-vehicle speech interaction must be designed with care –
the work of Kun and colleagues showed that low speech recognition
accuracy could detract from driving performance (Kun et al., 2007).
More recently, Sokol et al. compared user perceptions of noise-robust
and noise-sensitive in-vehicle speech systems (Sokol et al., 2017). The
authors found indications that a noise-robust speech recognizer would
lead to higher satisfaction, and perceived usefulness, even if users had
a clear explanation for the degradation of performance for the noise-
sensitive system. And while voice interfaces might help drivers keep their
eyes on the road, Mehler and colleagues point out that voice interfaces
are actually multi-modal interfaces; they require drivers to look away
from the road, push buttons, and think about questions and responses
(Mehler et al., 2016).

3.2.2 Gesture input

Another technology that has received considerable attention for in-
vehicle user interfaces is gesture-based input. Gestures can be mid-air
gestures, performed without contact with an object, as well as gestures
in contact with an object, such as with a touch screen. We expect that
mid-air gestures are easier to perform than manipulations of buttons,
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levers, or other physical objects, in part because gestures do not require
the driver to use vision to locate the object to be manipulated (Ohn-
Bar et al., 2012). Ohn-Bar et al. demonstrated the feasibility of a
vision-based system to detect hand gestures by the driver or front-seat
passenger with very high accuracy (Ohn-Bar et al., 2012). Rümelin et al.
conducted an on-road (Wizard-of-Oz) experiment where drivers had to
point at objects outside the vehicle (such as buildings) (Rümelin et al.,
2013). Drivers found pointing to be a desirable interaction technique
while driving.

Eren and colleagues explored the visual demands of ten gestures
that could be performed as shortcuts on in-vehicle touchscreens (Eren
et al., 2015), such as a star, or a square. The authors used four criteria
to assess the ease of using a gesture: accuracy of correctly performing
the gesture, number of glances at the touchscreen, total length of time
looking at the touchscreen, and the NASA-TLX score of performing a
gesture. The authors recommend four gestures as a gesture set for use
in vehicles. Of the ten tested gestures, these four were most accurately
executed, they were rated the least difficult, and they required the least
amount of visual attention.

3.2.3 Ambient light displays

Wickens argues that ambient and focal vision represent different mental
resources, and that they support time-sharing (Wickens, 2002). Ambi-
ent light displays are an attempt to take advantage of these separate
resources, and provide information to the driver in visual form. They
engage the driver’s ambient vision, allowing the driver’s focal vision to
attend to the outside world, as well as to gauges, buttons, and other
visual targets in the vehicle.

Researchers at the University of Oldenburg have explored a number
of potential uses of ambient light displays in vehicles (Figure 3.4).
Matviienko et al. found that ambient light shows promise in navigation
applications (Matviienko et al., 2016). Löcken et al. experimented with
using ambient light to help a driver decide if and when to change lanes –
the ambient light provided information about the distance to a vehicle
that was approaching in another lane (Löcken et al., 2015). And in an
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Figure 3.4: Ambient light display (purple light on the left) in the driving simulator
at the University of Oldenburg (image by Maleah Maxie).

experiment with a real vehicle, Hipp and colleagues found that ambient
light can be useful in supporting the driver as they reverse into a parking
spot (Hipp et al., 2016).

3.2.4 Augmented reality

Several groups have experimented with augmented reality using different
technology approaches. One approach used in driving simulator-based
studies is to present augmented-reality content directly on the simulator
displays, by manipulating the output of the simulation (Kim and Dey,
2009; Medenica et al., 2011). Other approaches include using a head-up
display (Bolton et al., 2015), using a head-down display (Fröhlich et al.,
2011), and using augmented reality glasses such as Microsoft’s HoloLens
(Kun et al., 2017) – two examples are shown in Figure 3.5. Augmented
reality is similar to ambient lights in that it might be able to display
information in the periphery of the driver’s visual field. This is not the
case for all augmented reality devices – for example Microsoft’s first-
generation HoloLens has a narrow field of display (around 40◦ wide), thus
any item it displays will be somewhat close to the driver’s visual focus.

Augmented reality also holds the promise of being able to alter the
way drivers see their environment, which could be used to gamify the
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Figure 3.5: Researchers at the University of Nottingham used a head-up display
(HUD) as an augmented reality display, and provided navigation instructions to
drivers in a simulator. The left image shows the view through the HUD with the
arrow pointing to a landmark (image by Gary Burnett). Researchers at the University
of New Hampshire (UNH) used Microsoft HoloLens augmented reality glasses in a
driving simulator-based experiment in which the driver communicated with a remote
conversant. The right image shows a UNH researcher with HoloLens in the simulator.

driving task (Steinberger et al., 2015), or provide useful information
to them, such as navigation instructions (Bolton et al., 2015; Fröhlich
et al., 2011; Medenica et al., 2011).

3.2.5 Haptic feedback

Researchers have also explored the use of haptic devices in vehicles.
For example, Asif and Boll used a haptic belt to provide navigation
instructions to drivers (Asif and Boll, 2010). However, as Campbell and
colleagues note, we cannot assume that vibrotactile messages will always
be perceived as directional (Campbell et al., 2016). Furthermore, the
authors warn that different body parts have different levels of sensitivity
to the displacement and frequency of vibrotactile elements, and that
there are individual differences between people in their perception
of vibrotactile inputs, at least in part because of differences in body
composition and attire.

3.3 Applications

Arguably, one of the most prolific areas of research in recent years has
been the exploration of in-vehicle applications. This work encompasses
bringing a functionality to the vehicle, or improving on an existing one.



242 Research on Human-Machine Interaction for Manual Driving

Figure 3.6: AR navigation simulated by drawing lines on the projection screen in a
simulator (Medenica et al., 2011).

The primary focus is on consumers, but work has also been done on
applications for special groups, such as first responders (Kun et al.,
2003; Mitsopoulos-Rubens et al., 2013). Here are the major application
types that have been explored, with some examples:

• Navigation. Perhaps the most wide-spread in-vehicle application
is the use of mapping software to provide navigation instructions
for the driver. Brown and Laurier created video recordings of
14 drivers using GPS systems (Brown and Laurier, 2012). They
documented five so-called “troubles” with the GPS systems, and
argue that drivers (and passengers) must actively process the
GPS instructions, and use them in combination with their own
understanding of the driving context. Medenica et al. found that
augmented reality (AR) navigation aids (Figure 3.6) can increase
the time drivers spend looking at the road ahead, compared to
head-down navigation aids (Medenica et al., 2011). Bolton and col-
leagues found that using landmarks in AR navigation aids can lead
to better navigational performance, as well as higher driver satis-
faction, compared to using distance-to-turn instructions (Bolton
et al., 2015).

• Communication. Drivers engage in communication with remote
conversants, and this can create dangerous situations
(Neale et al., 2005). This issue has been explored in detail, in-
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cluding by Charlton, who found that drivers who were engaged in
voice-only communication with a remote conversant performed
worse at the driving task than drivers who spoke to a passen-
ger, or those who were not engaged in communication (Charlton,
2009). Additionally, he found that passengers often slow down the
spoken dialogue when driving difficulty increases. He also found
that it is possible to get similar discourse patterns by including
warning tones in the conversation between a driver and a remote
conversant. Kun and colleagues explored video calling, and found
that in some situations drivers might decide that it is safe to look
at an LCD screen that shows the video of a remote conversant
(Kun and Medenica, 2012). However, in a separate experiment
when drivers used augmented reality (AR) glasses, they did not
look at the remote conversant (Kun et al., 2017); it is possible
that this is because the visual field of the AR glasses is small, and
looking at the remote conversant would have required drivers to
turn their head away from the road.

• Entertainment and infotainment. We know that drivers en-
gage in activities such as playing games or consuming information
in the vehicle. Alt and colleagues propose taking advantage of the
frequent pauses in driving that are caused by red lights in cities,
and allowing drivers to consume infotainment during these pauses
(Alt et al., 2010). To make this approach successful we need to
also know how to create the small chunks of media such that
drivers will want to consume them – for this problem Rosario and
colleagues propose using text summarization techniques (Rosario
et al., 2011).

• Information. While consumers can successfully complete the
driving task without engaging with any secondary tasks, some
professionals need to engage in secondary tasks as part of com-
pleting a job. A prominent such group of professionals are first
responders (Kun et al., 2015). Thus, one aspect of the Project54
system discussed above was that it enabled using speech com-
mands to query remote databases and to receive spoken feedback
about the query results (Miller and Kun, 2013).
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• Eco-driving. Driving behaviors, such as travel speed and accel-
eration after stops, might differ a great deal between drivers, and
even between different trips for the same driver. These differences
in behavior have a large impact on fuel consumption. Gonder
and colleagues found that even modest behavior changes, such
as a reduction in travel speed on the highway, can reduce fuel
consumption by 10% (Gonder et al., 2011). This can translate
into significant financial savings for individuals, and societies,
as well as into significant reductions in CO2 emissions. Thus, a
number of researchers are exploring user interaction techniques
that would help drivers make the necessary behavioral changes
(Meschtscherjakov et al., 2009). Of course, the use of (hybrid-)
electric vehicles can greatly reduce fuel consumption and CO2
emissions, but drivers are often concerned about the range of
such a vehicle, and a number of researchers are thus engaged in
designing user interactions that address this concern (Loehmann
et al., 2014; Neumann and Krems, 2016).

3.4 User Experience (UX)

In his seminal book entitled “The Design of Everyday Things,” Don
Norman argues that designers must pay attention to the experience
of interacting with their product (Norman, 2013). Norman is one of
the first to have used the term “user experience,” or simply UX. He
argues that UX is critical in enabling people to successfully use a
product, as well as to want to use the product again. Some aspects
of UX can be found in many publications that deal with in-vehicle
user interactions – for example, researchers often ask participants to
state their preference with respect to several possible interaction styles
(Medenica et al., 2011), or to assess how likely they might be to use a
type of interaction in their own vehicle (Kun and Medenica, 2012; Kun
et al., 2017). However, UX is usually not the primary focus of these
efforts. For researchers who wish to include UX in their work, Obrist
et al. provide a primer on how this can be done in mobile environments
(Obrist et al., 2010). Meschtscherjakov et al. provide one example of
a detailed evaluation of measures of UX, combined with measures of
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driving safety (Meschtscherjakov et al., 2015). The authors created a
prototype system that uses ambient light to provide feedback to the
driver about vehicle speed. In evaluating the prototype, the authors
assessed the effect of the prototype on vehicle speed, and also assessed
UX variables such as participant perceptions of usefulness, ease-of-use,
and safety of the system.

3.5 Passengers

Passengers are not frequently the subjects of exploration of human-
computer interaction in manually driven vehicles. However, research
with passenger participants has a number of important benefits. First,
it can improve the riding experience of passengers, which can make a
vehicle more desirable. Second, it can help create an environment that
provides for the information and entertainment needs of the passenger,
without distracting the driver. Third, it can create an environment in
which the passenger can effectively support the driver (Meschtscherjakov
et al., 2017). Finally, with the advent of automated vehicles, all of us
will be passengers, at least some of the time (we will address this in
the next section of this paper). Thus, what we learn about in-vehicle
human-computer interaction for passengers can prove to be quite useful
when we design interfaces for automated vehicles.

Wilfinger and colleagues at the Contextual Interfaces lab at the
University of Salzburg focused on passengers in the rear seat in an
experiment that involved 20 families (Wilfinger et al., 2011). It is
interesting to note that passengers in the rear seat are often children.
The authors argue that in designing user interactions for the rear seat it
is important to focus on experiences – understanding the experiences can
guide designers to deploy desirable technological solutions, in contrast
to pursuing technological solutions simply because we can.

Meschtscherjakov and colleagues recently reported on a sequence of
studies from the Salzburg group that focused on passengers
(Meschtscherjakov et al., 2017). They report on five research activi-
ties that explore the experience of passengers in vehicles. One of these
activities was the prototyping of the active corners interaction concept
(Figure 3.7). Active corners allows passengers, and the driver, to ex-
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Figure 3.7: Meschtscherjakov and colleagues explored the experiences of passengers
in vehicles (Meschtscherjakov et al., 2017). This image shows the active corners
concept, which enables sending information from one tablet to another (image by
Alexander Meschtscherjakov). The concept maps the physical location of each user
to one corner of each tablet. This helps users select the recipient of the information
they wish to share.

change information. The concept helps the user select the recipient of
the information by mapping the physical location of the driver and
passengers to the four corners of a tablet. The authors highlight the
scarcity of research on this topic, and argue that improving user experi-
ence in vehicles can best be done if all occupants are taken into account,
including passengers.

3.6 What is next?

Much of the work discussed in this section is ongoing. The most impor-
tant question underlying all of this research is: how do we keep all road
users safe? We do not know the complete answer to this question. At
the same time, the vehicle is quickly becoming a place for work and play.
This is due to the advances of technology which make it possible to
work and play in mobile environments, and people’s accompanying ex-
pectations of being able to work and play in any environment. However,
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Figure 3.8: Google car on display in the Computer History Museum, San Francisco.

the available in-vehicle user interfaces often do not effectively allow
drivers to work and play while keeping themselves, and other road users,
safe. Thus, work continues on this front, both attempting to provide
functionality to drivers safely, and attempting to reduce drivers’ access
to functionality when it is not safe for them to engage with it.

The most significant aspect of future work in developing in-vehicle
user interfaces is the fact that vehicle automation is gaining ground, from
vehicles with cruise control, to those that attempt to completely elimi-
nate the need for a human driver, such as the Google car (Figure 3.8).
This is the topic of the next section.



4
Focus Areas in Human-Machine Interaction for

Automated Driving

Isaac Asimov’s “Caves of Steel” is a 1950s science fiction novel that
describes Earth about 1,000 years from now (Asimov, 2011). In this
imagined world, people dislike and fear robots. Consequently, the protag-
onist drives a car manually, just like we would drive a car today – there
is no automation in place. While there is no telling what will happen
1,000 years from today, current trends in the automobile industry make
it likely that in the coming years and decades we will enjoy rides in
vehicles that take over more and more driving tasks, until they become
fully autonomous (Luettel et al., 2012).

There are a number of factors that make automated driving desirable
(Bengler et al., 2014; Koopman and Wagner, 2017; Kun et al., 2016;
National Highway Traffic Safety Administration, 2016b; Riener et al.,
2016; Shladover, 2009; Stanton and Marsden, 1996), and we will address
three of them. First, automation, and ultimately complete autonomy, is
expected to make driving significantly safer than it is today. One goal
might be to make driving as safe as air travel: Koopman and Wagner call
this the ultra-dependability safety target (Koopman and Wagner, 2017).
In addition to safety, automation can help transform vehicles into places
of work and play, such that drivers and passengers can re-claim the time
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they spend travelling (Kun et al., 2016). Furthermore, automation holds
out the promise of greater accessibility to transportation options for a
wide range of people, from the elderly, to people with disabilities (Pierce
et al., 2016). In order to achieve these lofty goals, human-machine
interaction with automated vehicles will have to build the trust of users,
and we will also need frameworks for resolving the legal issues related
to HMI for automated vehicles.

4.1 Automated vehicles and safety

The following subsections will explore the roles of human-machine
interaction for automated vehicles in improving driving safety.

4.1.1 Assisting the driver: Warnings, and nudges

Vehicle automation systems use sensors to perceive the world around
the vehicle, computing devices to set goals on how to proceed in this
world, and actuators to accomplish the goals (Luettel et al., 2012). The
sensors can be onboard the vehicle, or they can be part of other vehicles
or the infrastructure surrounding the vehicle (Bengler et al., 2014).
Utilizing these remote sensors will be possible if Vehicle-to-Vehicle
(V2V) communication is standardized, for example as proposed in 2016
by NHTSA (National Highway Traffic Safety Administration, 2016a),
and if at a later date Vehicle-to-Infrastructure (V2I) communication is
standardized (Geller, 2015). The remote sensors can provide information
about the location, speed, and direction of travel of other vehicles on
the road.

Autonomous vehicles will rely on the perception-computation-
actuation loop to control the vehicle without human intervention. Yet,
even without fully closing this automation loop and excluding the hu-
man driver, the same sensors, and computing devices that would be
used for autonomous driving, can be used to provide parking assistance,
collisions warnings, and lane departure warnings to the driver. Collision
warnings often take the form of auditory signals that indicate the pres-
ence of an obstacle, but they can also provide video of the area behind
or in front of the vehicle (Bengler et al., 2014). For collision warning, Lee
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and colleagues found evidence that an auditory-visual warning system
can be very effective, both for distracted and non-distracted drivers
(Lee et al., 2002). Similarly, Tidwell et al. found that both auditory-only
and audio-visual forward collision warnings are useful in alerting drivers
of heavy vehicles (Tidwell et al., 2015). Noble and colleagues also found
that the combination of a visual display and an auditory alert is use-
ful in guiding drivers through stop-sign-controlled intersections (Noble
et al., 2016). Note that such warnings can be realized using future V2V
and/or V2I technology. In general, warnings must be designed carefully
to avoid temporal conflicts between different warnings, as well as to
avoid nuisance warnings – these are false-positives where the system
warns the driver about a non-existent threat (Marshall et al., 2007).

Going a step further toward closing the automation loop, the system
can also introduce lane keeping assistance, to nudge the vehicle away
from a trajectory that would lead to a lane departure. This partial
automation uses sensors, computers, and actuators, but only under
limited circumstances. Navarro and colleagues found such nudging can
be more effective than a simple lane departure warning (Navarro et al.,
2007).

Technologies that fully close the automation loop, but only affect
driving under extreme circumstances, include electronic stability con-
trol, and antilock brakes. These technologies commonly do not have
a user interface – they operate when they are needed as “background
automation” (Kyriakidis et al., 2017). Another technology that fully
closes the automation loop is automatic braking. Automatic braking
can stop the vehicle when the system detects an imminent collision,
either with an object in front of the vehicle, or one that is approaching
on a collision course. Automatic braking is sometimes combined with
a warning system: the driver is first warned, and if they do not react,
the automation applies the brakes. Police-reported crash data indicates
that forward collision warning alone, as well as in combination with
automatic braking, can reduce rear-end collisions (Cicchino, 2017). Of
course, automatic braking does not require a user interface – after all,
such action happens because the automation determined that the driver
will not react in time. Yet, an explanation of what is happening might
be useful – Koo et al. found evidence that providing an explanation of
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how and why a car is reacting to an obstacle ahead could lead to better
driving performance (Koo et al., 2015).

4.1.2 Designing interfaces for systems with sustained automation

The first widely-deployed vehicular automation technology was cruise
control (CC), invented in 1945 (Merat and Lee, 2012). Once engaged, CC
maintains a desired vehicle speed, however the driver is responsible for
slowing down to avoid crashing into obstacles, such as slow moving lead
vehicles. By the late 1990s vehicles were also equipped with adaptive
cruise control (ACC), which can automatically slow down the vehicle to
match the speed of a slower lead vehicle (Jones, 2001). In a few vehicles
on the market in 2018, ACC can match the speed limit on the road
segment where the vehicle is travelling.

Both CC and ACC require drivers to set the desired speed, and ACC
might additionally require drivers to set the acceptable gap between
their vehicle and a lead vehicle. The gap setting might be confusing to
drivers: in a study with 103 participants Wu and Boyle asked owners
of ACC-equipped vehicles a series of questions, and found that around
24% of ACC owners found the gap setting confusing, while only around
17% found the speed setting to be confusing (Wu and Boyle, 2015). The
study did not pinpoint the cause of the confusion; thus more work is
needed in this respect.

Wu and Boyle also found that some drivers use ACC when they
are engaged in secondary tasks, such as manipulating the radio, or
making a phone call with a hands-free headset (Wu and Boyle, 2015).
For designers of ACC-related user interfaces, such as warnings, it is
important to understand who these users might be, and how to design
interfaces that allow them to drive safely. In a simulator study Xiong
et al. propose that risky behavior with ACC is related to drivers’ mental
model of ACC operation (Xiong et al., 2012). The authors applied the
model proposed by Rudin-Brown and Parker (Rudin-Brown and Parker,
2004), and divided drivers into two groups. One group consisted of
drivers who believe that, to a large extent, their own decisions and
efforts control their behaviors – these drivers are said to have an internal
locus of control (LOC). The other group was that of drivers with an
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Figure 4.1: Researchers from the Netherlands Organisation for Applied Scientific
Research (TNO) demonstrated collaborative adaptive cruise control (CACC) at
AutomotiveUI 2013. This image shows two of the three TNO vehicles that were at
the conference. The three vehicles formed a single column, with a lead vehicle, and
two following vehicles. The lead vehicle was fully controlled by a human driver. In
the other two vehicles, the driver controlled the lateral position of the vehicle, but
the longitudinal position was controlled by the CACC system.

external LOC, who believe that external circumstances guide their
behaviors. Xiong et al. found that drivers with an external LOC tend to
engage in risky behaviors more frequently than drivers with an internal
LOC.

If V2V and/or V2I communication is implemented, various cooper-
ative systems become possible, including cooperative adaptive cruise
control (CACC – see Figure 4.1), and platooning (Shladover, 2009). Just
like ACC, CACC controls the longitudinal position of the vehicle, but it
eliminates the need to measure the velocity of the lead vehicle, relying
instead on data provided by that lead vehicle, through a V2V communi-
cations link. This idea can be expanded to an entire platoon of vehicles,
all travelling at the same speed at very short following distances. The
benefits are important: platoons are safe, they also make better use of
highway real-estate than single vehicles travelling at longer following
distances, and they improve fuel efficiency (Shladover, 2009). Friedrichs
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and colleagues conducted a test-track study to evaluate a prototype user
interface that supports truck drivers in platooning (Friedrichs et al.,
2016a). Their results indicate that the design shows promise in being
accepted and in helping to improve drivers’ situational awareness. In
a driving simulator experiment this group also confirmed that visual
interface design can influence the level of trust in the platooning system
(Friedrichs et al., 2016b). Hjälmdahl and colleagues also found that the
human-machine interface is important in platooning systems in order to
reduce drivers’ workload, and increase their level of trust in the system
(Hjälmdahl et al., 2017).

One concern for platooning systems is that it might require drivers
to perform some monitoring tasks – for example to monitor the system
for requests to transfer control from the automation to the driver. The
expectation is that drivers would be quite poor at such a task (see
e.g. (Hancock, 2015)). Interestingly, Heikoop et al. found that during
simulated platooning, drivers performed very well on a monitoring
task (Heikoop et al., 2017). Note that the monitoring task involved
looking at the open road, which might have been an engaging task,
which is perhaps why drivers performed unexpectedly well. This re-
sult underscores the idea that what and how drivers are expected
to do (including human-machine interaction) will affect their perfor-
mance.

Automation technology also helps drivers maintain lateral control of
vehicles. For example, the 2010 Lincoln MKS, investigated by Reimer
et al. (Reimer et al., 2016), can be equipped with a parking assist feature.
Parking assist automates lateral control (steering), and requires the
driver to provide longitudinal control (accelerator, brake). Reimer and
colleagues found that, compared to manual parking, the automation
reduced subjects’ anticipatory heart rate. Since anticipatory heart rate
is a measure of stress, the results indicate that the automation reduced
the stress of parking in this experiment.

There has been significant effort in combining lateral and longitudi-
nal control for automated driving, notably in Tesla’s production vehicles.
Endsley describes her personal experiences with a Tesla vehicle, and
notes that the user interface design can result in mode confusion for
the driver (Endsley, 2017).
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4.1.3 Transferring control to the driver

As of 2018, the consensus opinion is that, for the foreseeable future,
automated vehicles will need to transfer control to a human driver more
or less often. This problem of how to transfer control is a significant
area of research, because we do not yet know how to ensure that the
human driver will be able to safely take back control of the vehicle after
automated driving.

One important question is how long it will take drivers to successfully
resume control of an automated vehicle. Mok and colleagues placed
participants in a simulated vehicle that drove under automated control
for 10 minutes, during which time the participants watched a video.
After 10 minutes the participants were given a warning that they had to
rapidly assume manual control of the vehicle. The researchers wanted to
know how much time participants needed from the onset of the warning
to take over manual control such that they could safely maneuver the
vehicle between a set of cones placed in a curve. They found that the
minimum time for takeover in this scenario was between 2 and 5 seconds
(Mok et al., 2015). Mok and colleagues repeated the experiment but
instead of asking participants to passively watch a video, they asked
them to play a game (Mok et al., 2017). The active distraction increased
the minimum takeover time to between 5 and 8 seconds.

The performance criterion set by Mok and colleagues (can the driver
avoid crashing into cones on a curve?) is quite appropriate – as we
argued earlier, the critical driving performance measure is how well the
driver can avoid crashes. Yet, this is also a measure that is similar to
performance measures such as number of crashes, or various discrete
measures of lateral or longitudinal control. This means that it does
not provide a measure of how the driver’s ability to manually control
the vehicle changes over time after a warning is issued; furthermore, in
scenarios where we do not observe any crashes into cones we might over-
estimate the ability of the driver to handle all other driving challenges,
such as unexpected actions by different road occupants. To evaluate how
driving performance might change over time after a driver takes over
manual control of a vehicle, Merat and colleagues (2014) used standard
deviation of lane position (as well as a measure of visual attention to
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the road ahead). They found that it took about 40 seconds for the
lateral control of the vehicle to stabilize after transfer of control from
high automation to manual driving.

Van der Meulen et al. compared the times it took drivers to take
control of a vehicle for two scenarios: in one scenario participants began
in a parked vehicle and were then instructed to start following a lead
vehicle, while in another they had to take over control after their vehicle
was controlled by automation (van der Meulen et al., 2016). In both
cases participants operated the vehicle on a straight road with no
distractions. In this simple environment, the authors found that in both
cases the mean takeover time was around 2–2.5 seconds.

Schroeter and Steinberger proposed using augmented reality to
introduce games in automated vehicles with the goal of maintaining the
driver’s situational awareness; they hypothesize that this can lead to
shorter takeover times (Schroeter and Steinberger, 2016).

4.1.4 Interacting with other road users

Automated vehicles will interact with other road users, including other
automated vehicles, as well as human-driven vehicles, pedestrians, and bi-
cyclists. These interactions have significant safety implications. Rothen-
bücher and colleagues explored how pedestrians might treat a vehicle
that appears to have no driver: will they step in front of it at a pedestrian
crosswalk (Rothenbücher et al., 2016)? In the study the vehicle was
actually driven by an experimenter, but this person wore a costume that
made them look like they were part of the driver’s seat. The authors
found that most pedestrians managed the interaction smoothly, trusting
that what they believed to be an automated vehicle would let them
cross the street safely.

Haeuslschmid et al. propose using the outside of the windshield for
providing directions (Figure 4.2), as well as advertisement to pedestrians
(Haeuslschmid et al., 2016). The same mechanism might be useful in
providing information to pedestrians who are attempting to cross the
street in front of an automated vehicle.

On the road, drivers interact with other road participants in part
through the motions of their vehicles. Thus, in the Rothenbücher study
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Figure 4.2: Haeuslschmid and colleagues proposed the idea of using the windshield
to provide directions and advertising messages to pedestrians (image by Renate
Haeuslschmid). This image demonstrates the idea that the interaction might include
input from the pedestrian, for example to enter a desired destination on a map.

pedestrians saw a vehicle stop at the cross walk, and understood this
to communicate that the car is inviting them to cross the road. Risto
et al. explored a variety of what they call “vehicle movement gestures”
and argue that these are vehicle motions that communicate different
messages to other road users (Risto et al., 2017). The authors argue
that automated vehicles will have to understand such gestures to work
well with human road users (drivers, bicyclists, and pedestrians). Brown
and Laurier reviewed online videos about the use of automated vehicles,
and their interactions with other road users (Brown and Laurier, 2017).
They found that as of 2017 vehicle automation often cannot properly
understand the “vehicle movement gestures” of vehicles controlled by
humans, and vice versa.

4.1.5 Safety concerns: atrophying skills, and mode confusion

While automated vehicles are likely to improve safety in many ways,
there are at least two areas where researchers have expressed safety
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concerns. One of these is the potential loss of skill: as drivers rely
more on automation, they might become less skilled drivers. Casner
and colleagues found that pilots’ skills atrophy with extended use of
automation (Casner et al., 2014). It is possible that this negative effect
would be present in drivers too (Casner et al., 2016; Stanton and
Marsden, 1996). And, perhaps it would be even more pronounced than
in pilots, given that drivers receive much less training than pilots do.

Another concern is that of mode confusion. Writing in 1996, Stanton
and Marsden warned that the design of user interfaces can lead to
mode confusion in automated vehicles. In reporting on her experiences
with Tesla automation features, Endsley indicates that she had indeed
experienced mode confusion (Endsley, 2017). It is worth noting that
the different standards that have been used to categorize levels of
automation (National Highway Traffic Safety Administration, 2013;
SAE On-Road Automated Vehicle Standards Committee, 2016) do not
easily translate into a system to describe and model mode confusion.

4.2 Reclaiming time

According to the US Census Bureau, in 2009 workers in the US spent an
average of 25 minutes a day commuting to work, and over 75% complete
this trip driving alone in their automobile (McKenzie and Rapino, 2011).
Assuming that the trip back from work also takes around 25 minutes,
millions of people spend nearly an hour of each working day in a vehicle.
If they commuted in an automated vehicle, they could reclaim this time
for relaxation, play, and work (Kun et al., 2016).

However, for an automated vehicle to be transformed into a place of
work and play, we have to create user interfaces that allow for work and
play to take place. These interfaces will be constrained less with the need
to keep the driver’s attention to the road, and more with the physical
characteristics of the vehicle, such as its size, motion, and the seating
arrangement. Constraints will also include network speed, the on-board
computing power, and quality of sensor readings. Importantly, interfaces
will have to be created such that they reduce the likelihood of motion
sickness, which could result from people looking away from the outside
world.
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The design of interfaces for work and play in automated vehicles
can be informed by studies such as the one conducted by Large et al. –
the authors observed six participants who undertook driving simulator-
based journeys on five consecutive days (Large et al., 2018). Each
journey included both manual driving and highly-automated driving.
Participants were told that during the highly-automated portions of the
simulated trips, they need not monitor the system. Thus, during these
portions of the journey, they engaged in activities, such as reading, web
browsing, and watching videos.

The design of interfaces for automated vehicles will also benefit from
improved understanding of how passengers behave in manually-driven
vehicles, since in automated vehicles all of us will become passengers,
at least for some of the time. Pfleging and colleagues conducted an
online survey to find out which activities people would like to undertake
while travelling in automated vehicles (Pfleging et al., 2016b). Their
results indicate that these activities would be similar to the activities
of today’s passengers travelling in manually-driven vehicles.

Yet, future automated vehicles will likely provide exciting opportuni-
ties for novel interactions, beyond those that today’s passengers practice.
Unfortunately, they will likely also present accompanying drawbacks
and risks. One interesting opportunity will be to design interactions
with other people in the vehicle, and even with people in other vehicles.
Schroeter et al. (Schroeter et al., 2012) explored one example of the
latter, albeit in the realm of manual driving; the authors experimented
with allowing drivers to assign badges to other road users as a way of
providing feedback about their road behavior.

As for drawbacks and risks, perhaps the most important one is
motion sickness. As Diets and Bos point out, when the passenger is
engaged in a non-driving task, they might see motions that are different
from the motions sensed by their vestibular system (Diels and Bos,
2016). This visual-vestibular conflict can result in motion sickness. The
authors propose design guidelines to reduce this effect; for example, they
recommend placing visual displays such that the passenger’s peripheral
vision can receive motion cues from the outside world.

Given that our future interfaces might allow for interactions that
involve personal data (from bank accounts, to health data, to data
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about personal relationships) the interfaces will also present challenges
in data security and privacy (Smith, 2017). The design of interfaces
should also take into account possible new ways to intrude on the
time and attention of vehicle occupants. After all, in vehicles with
high automation, where the human operator no longer needs to be in
charge of the moment-to-moment control of the vehicle, the designer
of the interface does not need to worry (as much) about taking the
occupants’ attention away from the road. This opens up the possibility
of introducing a significant amount of advertisements in the vehicle; as
Krumm points out, advertising might be the killer app in ubiquitous
computing systems (which include highly automated vehicles) (Krumm,
2011). This raises the issue of privacy – what does the car know about
its occupants, and how does it share it with advertisers?

4.3 Expanding access to transportation

The majority of today’s designs of automated vehicles are geared to-
wards adults who do not suffer from major health issues. These designs
assume that users can see and manipulate displays, and that they can
issue verbal commands and hear auditory feedback. Yet, for people with
a range of disabilities, some or all of these assumptions do not hold – for
example, Pierce and colleagues provide a review of how different disabil-
ities affect the transportation-related user needs of affected populations
(Pierce et al., 2016). Thus, many user interface designs explored today
would not allow people with disabilities to use automated vehicles.

Access to transportation options is a significant problem for many
people, from those with disabilities related to vision or hearing, to
wounded veterans, to the elderly who have reduced mobility. A 2003
study conducted by the US Department of Transportation found that
in the US 6 million people with disabilities had difficulty finding the
transportation options that they needed (Bureau of Transportation
Statistics, 2003). Improving this situation will require advances on
multiple fronts, and one of those is the design of user interfaces to
allow people with disabilities to interact with automated vehicles. These
interactions should include entering destinations and preferred routes,
issuing new commands and status queries during a trip, and receiving
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feedback about vehicle actions and status throughout the trip. The
interface must meet three requirements. First, it has to be accurate.
Accuracy means, in part, that the interface must allow the user to
reliably set the vehicle on a desired path (including a destination and
possibly waypoints, or other characteristics of the road), or it must
provide clear feedback why this is not possible (e.g. because of a blocked
road). Accuracy expectations will be high: it is likely that, unless the
vehicle performs according to user expectations every time, it will not
be accepted by users. After all, today’s manually driven vehicles meet
this high expectation of accuracy, and self-driving vehicles will likely be
held to this high standard.

Another related requirement is for the interface to be trustworthy. In
fact, trust is a central concern in the design of in-vehicle user interfaces
for self-driving vehicles (Riener et al., 2016) – this is the topic of the
next subsection. Accuracy will greatly influence trustworthiness, but
so will user interface design decisions, such as the clarity of feedback.
Finally, users should like the system, because this will make it more
likely that they will actually use it. If the system is cumbersome to use,
or if it evokes negative emotions, then users might avoid using it.

4.4 Trust

Lee and See argue that trust is an “example of the important influence
of affect and emotions on human-technology interaction” (Lee and See,
2004). The authors argue that trust will affect reliance on automation
when the human operator is faced with uncertainty and complexity
in operating a device that “make an exhaustive evaluation of options
impractical.” This can certainly be the situation in traffic: an automated
vehicle has to make control decisions based on a complex context, that
is full of uncertainty. Furthermore, the control decisions are based on
complex algorithms. It follows then, that human acceptance of vehicle
automation will be affected by trust.

Körber and colleagues found that introductory information about
the automation in a vehicle can affect trust (Körber et al., 2018).
Furthermore, the authors found that the resulting level of trust has an
effect on how quickly drivers react to a request for taking back control
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from the automation. Participants with higher trust in the automation
took about 1.2 seconds longer to take back control of the vehicle. This
delay resulted in a 0.9-second reduction in the time-to-collision with
the obstacle that was the reason for the request to take back control.
Thus, the authors show that the way we introduce the capabilities
of the automation system can help users calibrate their level of trust
appropriately, and avoid overtrust and distrust, which is the terminology
used by Lee and See (Lee and See, 2004).

Public opinion on automated driving indicates that researchers and
developers must take this issue very seriously. This is underscored by
the results of online surveys that Schoettle and Sivak conducted in
six countries: US, UK, Australia, China, India and Japan (Schoettle
and Sivak, 2014a; Schoettle and Sivak, 2014b). Over 500 participants
provided responses in each of the six countries. Participant responses
indicate that the public has positive expectations for automated vehicles –
for example, majorities in all six countries expect that this technology
will improve driving safety by reducing the number and the severity of
crashes. However, large majorities in all six countries also have at least
some concern with issues such as equipment failure, and interacting with
human-driven cars. Of course, part of the issue here is the underlying
reliability of the technology: if automated vehicles perform well, users
will trust them. However, automated vehicles will also have to interact
with users, both inside and outside the vehicle, in such a way as to
build and maintain the trust of the public.

This building of trust using improved human-machine interaction
was explored by Yan et al. in a simulator-based study (Yan et al., 2017).
The authors evaluated an adaptive lane-change assistance system, and
found a relationship between the effectiveness of the human-machine
interaction and trust: better human-machine interaction led to increased
trust.

Beggiato et al. show that trust in ACC develops over time, as do
acceptance of the system, and self-reported measures of learning of
system functions (Beggiato et al., 2015). One of the self-reported mea-
sures of learning was the agreement with the statement “I understand
what the displayed ACC messages mean,” which is a measure of how
well drivers understand the human-machine interaction of operating
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the ACC. The message of this work is important, and it echoes one of
the arguments put forth by Lee and See (Lee and See, 2004): trust is
a dynamic concept and it evolves over time, in part as a function of
human-machine interaction.

4.5 Legal issues

As of 2018, the laws governing the testing, deployment, and eventual
widespread use of higher levels of automation in vehicles (when the
driver is disengaged from the driving task for extended periods of time),
are still under development worldwide. Greenblatt reviews a number of
issues in this realm, focusing on the driving task itself – how to make it
safe, and who is responsible if there is a crash (Greenblatt, 2016). Others
have also explored the issue of crashes, especially the moral question of
how an automated vehicle should choose between multiple undesirable
outcomes; for example, given only two options, should the automated
vehicle hit a wall and injure its own passengers, or hit pedestrians
crossing the road and injure them (Frison et al., 2016; Rahwan et al.,
2016)? Nyholm and Smids persuasively argue that such questions are not
analogous to the classic trolley car problem, where a person has to make
a split-second decision, and chose which people will live and which ones
will be run over by a runaway trolley car (Nyholm and Smids, 2016). The
authors argue that one of multiple differences is in the decision-making
situation. In the trolley car problem a single human agent has to make
a split-second decision about only two possible choices. In contrast, an
automated vehicle preparing for a crash will implement prospective
decisions of multiple stakeholders, and it will consider many possible
outcomes, each of which will have some probability of occurrence. This
element of probabilistic outcomes is also explored by Frison et al. in their
trolley car-like experiment with automated vehicles (Frison et al., 2016).

And while the legal questions pertaining to the driving task faced
by automated vehicles continue to be considered by researchers, practi-
tioners, and lawmakers, Inners and Kun explore legal questions related
to human-machine interaction in automated vehicles (Inners and Kun,
2017). Their primary focus is on vehicles that we can expect in the near
term, where the driver will have a role to play in the driving task, at least
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from time to time. The authors provide an overview of the legal land-
scape that automated vehicles (will) operate under in the US, including
jurisdiction levels, liability laws, the regulation of equipment, and driver
licensing. The authors then make the argument that several aspects of
the design of human-machine interaction in automated vehicles might be
regulated. Regulation might mean the standardization of some features
of the in-vehicle interfaces, in order to avoid confusing drivers when they
switch between automated vehicles. Also, we might need to standardize
the behaviors that automated vehicles exhibit; this could be done to
avoid confusing human drivers of manually-driven vehicles who will
share the road with automated vehicles (c.f. Brown and Laurier, 2017).
Furthermore, we might need rules about software updates of interfaces,
because the updates can introduce changes that can confuse drivers.

4.6 What is next?

Automated vehicles are making rapid progress, but there is a great
deal of work left for researchers, developers, as well as regulators. One
exciting challenge in this realm, as discussed by Kun, Boll, and Schmidt,
is how automated vehicles will change the meaning of mobility (Kun
et al., 2016). One aspect of this change is in the granularity of control
that is necessary to operate a vehicle. The driver of a manually controlled
vehicle exercises control in sub-second time intervals. For automated
vehicles the commands would be less frequent – in terms of Michon’s
hierarchy (Michon, 1985), a highly automated vehicle might require
input from the user only at the strategic (highest) level. Flemisch and
colleagues explored vehicles that are more likely to appear in the near
term: those that can operate with high levels of automation for some
period of time, but also need driver intervention during other times. For
such vehicles, the authors suggest implementing shared control between
the human driver and the automation, where the level of human control
can vary depending on context (Flemisch et al., 2014). When the context
is such that the automation can perform the driving task well, the driver
might only issue commands at the middle level of Michon’s hierarchy:
maneuvering. If the context is too difficult for the automation, the
driver would assume all control responsibilities.
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Looking further into the future, the passenger travelling in a fully
automated (that is autonomous) vehicle might simply have to enter a
desired destination. In fact, our future vehicles might become similar to
the clairvoyant elevators in the science fiction novel “The Hitchhiker’s
Guide to the Galaxy” by Douglas Adams – these elevators know which
floor you wish to go to even before you do, thus eliminating the need to
wait for an elevator (Adams, 2009). As the work of Krumm and Horvitz
shows, our vehicles might soon be able to predict quite accurately where
we wish to go at any given moment (Krumm and Horvitz, 2006). Here
one challenge for designing user interactions will be to let the user still
feel in control.

Yet another exciting area for research is how to allow children to use
automated vehicles. Here, questions for user interactions abound. Who
tells the vehicle where to go – the parent, the teacher, the child? How
does the vehicle make sure the children are securely buckled? What
happens if anything goes wrong – who intervenes and how? Similar
issues might arise if we want to use automated vehicles to expand
transportation options for elderly people (Dickerson et al., 2017) and
people with disabilities.

In a 2016 blog post, Yoav Hollander discussed the question of how to
intervene if something goes wrong with an automated system (Hollander,
2016). He argues that we can expect to see the rise of mostly-autonomous
systems, which will perform perfectly in almost any situation, but that
will infrequently encounter situations they just cannot solve. One such
case might be an automated vehicle that has its path blocked by a tree
that fell on the roadway. A child (or a person with a disability) might
not be able to manage such a situation. Hollander argues that there
might be a need for a new profession to deal with these types of cases:
operator of mostly autonomous systems. For designers of automotive
user interfaces this would mean creating interfaces that allow remote
operation of the vehicle, as well as appropriate remote communication
with the occupants of the vehicle.

Remote operation might also be very interesting in the transporta-
tion industry. We can expect that platooning trucks will appear on
our roads in the coming years. But do we need a driver in each of the
trucks? Consider the following scenario. A company has a truck that
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is capable of platooning. In other words, the truck can follow another
truck travelling in front of it at a very short distance. The truck’s
automation controls both the lateral and the longitudinal position of
the truck in the platoon, and no human intervention is needed. However,
platooning only works on some highway segments (e.g. platoons can
travel in designated lanes where other vehicles are excluded for safety
purposes). Other than on these highway segments, the truck must be
driven by a human. Furthermore, the truck can be remotely operated
to join, or to leave, a platoon. With such a truck, the company can hire
a local driver to move the truck from a warehouse to a meeting point
on the highway. Here, the local driver leaves, and a remote driver takes
over. The remote driver controls the truck as it joins a platoon headed
towards its destination. Once the truck reaches the meeting point closest
to its destination, a remote driver takes control, pulls the truck out
of the platoon and parks it. Then a local driver boards the truck and
drives it to the destination. One of the technologies that would enable
such a scenario is the user interface to allow remote control of the truck.

Inside the vehicle, we can expect dramatic changes with the advent
of automation. One technology that has the potential to help make
the vehicle a place for work and play is augmented reality (AR). AR
(implemented on the windshield (Häuslschmid et al., 2015), or with
AR glasses (Kun et al., 2017)) might help us make the best use of the
limited space that is available in the vehicle cockpit, without requiring
keyboards, displays, and other interaction devices that could be difficult
to manipulate, and that might present dangerous flying objects in
the case of a collision. One important question is whether AR can be
implemented in vehicles without leading to motion sickness in users,
since motion sickness can be caused by conflicts between signals from
the visual and vestibular systems (Sivak and Schoettle, 2015). AR will
provide visual signals, but these might not be congruent with the signals
of the vestibular system which respond to the motions of the vehicle.
It is also possible that virtual reality (VR) displays will play a role
in future vehicles, however here the issues with motion sickness will
be even more prominent, as the user will not have any direct visual
feedback from the physical world in which the vehicle is moving (McGill
et al., 2017).
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Another interesting set of questions regarding user interactions will
be related to brand experience in automated vehicles. At the inaugural
AutomotiveUI conference in 2009, Gert Volker Hildebrand, who was
General Manager of Mini Design in the BMW Group, talked about
designing the interior of a Mini vehicle, and pointed out how the
designers strive to tie the brand experience in a new vehicle to that in
an older model1. On the other hand, we might experience automated
vehicles quite differently than today’s vehicles, because they might
be part of smaller or larger vehicle-sharing networks (Burns et al.,
2013; Schoettle and Sivak, 2015). Consequently, user interface design for
automated vehicles might become similar to interior design for buildings.
In buildings, the same office space might be rented to a jewelry store,
a bank, or a child care facility, and the occupant will determine the
interior design. Similarly, different commercial vehicle-sharing networks,
or taxi services, might rely on the same underlying automated vehicle
technology, but they might wish to differentiate themselves from each
other in part by the design of the interior of the vehicle, including the
user interactions that are available to riders.

Everyone who embarks on exploring in-vehicle user interfaces, for
manually-driven or automated vehicles, should work towards under-
standing the context of driving. Who uses the vehicle, for what purpose,
and under what circumstances? As Dourish and Bell argue, “cultural
phenomena are prior, not consequent to design” (Dourish and Bell, 2011).
Yet, we still do not know enough about the cultural practices that cars
fit into, and this is especially true of automated vehicles. A place to
start building an understanding of what vehicles are used for today is
the work of John Krumm, based on 2009 National Household Travel
Survey (Krumm, 2012). Krumm provides statistics for trip distances and
durations, as well as statistics for popular destinations and destination
sequences. It is also instructive to read the account of Genevive Bell, a
cultural anthropologist, of working towards understanding cars as sites
of human activity and cultural practices (Bell, 2011). Bell stresses that
cars are “contested space when it comes to new technology” and that we

1See the concept video presented by Gert Volker Hildebrand at https://www.
youtube.com/watch?v=aSWr_Craqos

https://www.youtube.com/watch?v=aSWr_Craqos
https://www.youtube.com/watch?v=aSWr_Craqos
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need to understand this space in order to design interfaces for vehicles.
Pettersson and Ju also make this argument, saying that automated
vehicles operate in the same physical space that we inhabit, and thus
they have to “be culturally situated and adapted” (Pettersson and Ju,
2017). It is important to note that technically similar vehicles are used
by multiple groups of users: consumers, professionals whose focus is on
driving, such as truck drivers and bus drivers, and professionals who
also have to focus on other tasks beyond driving, such as first responders
(Kun et al., 2015), as well as installation and repair technicians. Much
of the existing work on understanding the driving context has involved
consumers, but there is less work exploring other populations.

The above list of issues is not exhaustive. However, it is important
to remember one issue that will clearly be important as we design user
interfaces for automated vehicles, especially in the short term, before
vehicles are truly autonomous and do not need human intervention.
This issue is that automation has been introduced in other realms of
human activity, and the results are not always as we would expect (and
like) them to be. This is the message that Casner and colleagues make
(Casner et al., 2016), and they draw parallels to the aviation industry
where we have encountered some of the effects of automation that might
appear in automated vehicles. These unwanted effects include putting
too much trust in the automation, as well as ignoring alarms that are
perceived to simply be a nuisance instead of warning of a genuine danger.
User interface designers have a central role to play in reducing, and
ideally eliminating, these negative effects.



5
Conclusion

Driving is a defining characteristic of modern life. Millions of people
commute to work each day in a car or a bus. Trucks transport goods
on our roads, and first responders reach those in need by driving to
them, lights flashing. Driving plays a positive role in the world, as it
is a key element of our economic activity, our security, and our social
lives. Thus, much work is done to make driving efficient, and to allow
drivers and passengers to spend time their vehicles comfortably, and
even productively. Yet tragically, a large number of people die each year
in driving-related events worldwide. In the US, the number of people
who die in crashes is over 30,000 annually. In the EU, the number is very
similar. It is no surprise then, that a great deal of effort is expended
on understanding how people drive, and how best to allow drivers to
safely control their vehicles, even as they possibly interact with other
devices, such as mobile phones. In this document, we reviewed some of
the key areas of this broad effort, both in the realm of manually driven
vehicles, and in the realm of vehicles with automation. We have also
discussed some potentially fruitful areas for continued exploration of
in-vehicle user interfaces.

One of the key questions for automotive user interface research and
development is what role automation will play in future vehicles. Will
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we have a significant number of automated vehicles on the road in the
near future? If so, what does “near future” mean? Or, will people insist
on retaining control and reject automation? We do not know the answer
to these questions yet. However, it seems likely that people will embrace
automation, because the benefits are significant, and our technology is
making dramatic progress towards enabling automated driving. Manual
driving might persist for many years to come, but eventually it is likely
to be relegated to the role of entertainment, just like horseback riding
transformed from a mode of transportation to a pastime. Thus, in
addition to working on important issues related to manually driven
vehicles which dominate the roads in 2018, researchers and developers
in the automotive user interface domain should devote increasing efforts
to creating user interfaces for automated driving.
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