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Abstract 

We report on the results of a study in which pairs of subjects were 
involved in spoken dialogues and one of the subjects also operat-
ed a simulated vehicle. We estimated the driver’s cognitive load 
based on pupil size measurements from a remote eye tracker. We 
compared the cognitive load estimates based on the physiological 
pupillometric data and driving performance data. The physiologi-
cal and performance measures show high correspondence suggest-
ing that remote eye tracking might provide reliable driver cogni-
tive load estimation, especially in simulators. We also introduced 
a new pupillometric cognitive load measure that shows promise in 
tracking cognitive load changes on time scales of several seconds. 

CR Categories: H.5.2 [Information Interfaces and Presentation]: 
User Interfaces  
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1 Introduction 

In-car electronic devices are becoming ubiquitous. While these 
devices provide entertainment and useful information to the driv-
er, they may also be a distraction from the primary task in a car 
which is driving. In order to model user interactions with such 
devices, researchers often use the concept of cognitive load. Cog-
nitive load (also referred to as mental workload) is commonly 
defined as the relationship between the cognitive demands placed 
on a user by a task and the user’s cognitive resources [Wickens 
2002]. The higher the user’s cognitive load is, the higher the 
chance is that the user will not complete a given task without an 
error. Cognitive load can be estimated using performance, physio-
logical and subjective measures. The focus of this paper is eva-
luating drivers’ cognitive load in driving simulator studies using 
driving performance and physiological measures. 

Researchers, including our team [Kun et al. 2009], have used eye 
trackers in driving simulators to gather visual attention data. 
However, eye trackers can also be a source of physiological 
measures of cognitive load. This is due to the fact that when 
people are faced with a challenging cognitive task, their pupils 
dilate. This simple phenomenon, called task evoked pupillary 
response [Beatty 1982] can be used in estimating cognitive load. 
Until recently only head-mounted eye tracking systems could 
provide pupillometric data. One problem with these trackers is 
that they can be cumbersome to use and could therefore affect the 
outcome of measurements [Marshall 2002]. Recently remote eye 
trackers appeared which are precise enough to provide useful 
pupil diameter measures. For example, Klinger et al. [2008] 

estimated cognitive load with a remote eye tracker in a desktop 
environment. We propose using remote trackers in driving simula-
tors. We hypothesize that pupillometric measures will correspond 
with driving performance measures of cognitive load. 

Two common pupillometric cognitive load measures are the index 
of cognitive activity (ICA) and the mean pupil diameter. ICA uses 
the frequency of minute dilations of the pupil [Marshall 2002]. 
This method is used almost exclusively with head-mounted eye 
trackers owing to their high precision. The mean pupil diameter 
can be easily calculated even with remote trackers. Because of the 
averaging process, this calculation is more resistant to measure-
ment noise than the ICA. In section 3.2.3 of this paper we propose 
a new pupillometric measure, the mean pupil diameter change 
rate, for estimating rapid cognitive load changes. 

The goals of this study are to evaluate the correspondence be-
tween driving performance and pupillometric measures and to 
provide a preliminary evaluation of the mean pupil diameter 
change rate as a measure of rapid changes in cognitive load.  

2 Related research 

2.1 Cognitive load 

In the literature researchers dealt with three types of cognitive 
load measures: performance, physiological and subjective meas-
ures [O'Donnell and Eggmeier 1986]. Performance measures cap-
ture how well the user is performing a given task. For driving, this 
can include lane departures, steering wheel variance, visual atten-
tion to the outside world, etc. Physiological measures include 
pupil dilation [Bailey and Iqbal 2008], heart-rate variability, and 
galvanic skin response. Changes in these measures have been 
shown to correlate with varying levels of cognitive load [Reimer 
et al. 2009]. However, physiological measures depend on many 
factors, including other aspects of the user’s cognitive state (such 
as stress [Healey and Picard 2000] and arousal), the user’s physi-
cal activity and environmental variables (such as temperature). 
Subjective measures capture the user’s subjective assessment of 
cognitive load. A commonly used assessment tool is the NASA-
TLX questionnaire [Hart 1988]. While such a tool is relatively 
simple to administer, it cannot account for rapid changes in cogni-
tive load that may be the result of changes in experimental condi-
tions. In this work we evaluate the agreement between physiolog-
ical measures based on pupil size measurements with a remote 
eye tracker and driving performance measures. 

2.2 Pupillometry 

Iqbal et al. [2004; 2005] conducted experiments with subjects 
performing manual-visual tasks in front of a computer screen. 
They measured task completion time, percent change of pupil size 
(PCPS), average percentage change of pupil size (APCPS) and 
subjective ratings. PCPS is calculated as the difference between 
the measured pupil size and a baseline pupil size divided by the 
baseline pupil size. APCPS is the average of this measure over a 
time period. The authors found that the PCPS correlated well with 

 



the mental difficulty of the task. More complex tasks resulted in 
higher values of PCPS compared to easier tasks. This study used a 
precision head-mounted eye tracking system (EyeLink 2). The 
same eye tracker was used by Schwalm et al. [2008] in a driving 
simulator study. Their subjects performed the standardized lane 
change task [Mattes 2003] and an additional visual search task. As 
dependent variables, they looked at driving performance, NASA 
TLX and the index of cognitive activity (ICA). As driving per-
formance, the mean lane position deviation was considered which 
is the mean difference between the driven path and a so-called 
optimal path. The study found that the ICA correlates well with 
the driving performance measure: when the additional visual task 
was introduced, driving performance decreased and the ICA in-
creased. The authors attributed this change in ICA to changes in 
workload, but the visual nature of the secondary task could also 
have affected the index of cognitive activity. 

While head-mounted eye trackers are useful for precise eye meas-
ures, they are impractical in consumer driving environments and 
can also affect the results of the experiments [Marshall 2002]. 
Thus researchers have turned to remote eye tracking in cars to 
infer the cognitive load of the driver. Recarte and Nunes [2000] 
used monoscopic remote eye tracking in a naturalistic driving 
experiment. The eye tracker measured gaze information as well as 
pupil diameter. The diameter was measured by the number of 
image pixels. While driving on the road, subjects were given two 
kinds of secondary mental tasks: a verbal and a spatial-imagery 
task. Pupil diameter measures showed differences between sec-
ondary task and no secondary task conditions, but did not show 
significance for the different kinds of secondary tasks.  

In a later study Recarte et al. [2008] built on their prior findings, 
while using a remote eye tracker in front of a screen instead of in 
a car. The authors compared three measures of mental workload: 
NASA-TLX, pupil size and blink rate. They found that NASA-
TLX and pupil size cannot discriminate between mentally and 
visually challenging tasks. On the other hand blink rate was a very 
good measure for indicating these differences: high visual demand 
inhibited blinks while a high mental workload task without a vis-
ual component increased the blink rate. In our experiment, the 
secondary tasks are predominantly cognitive so we should expect 
to see changes in pupil size measurements.  

Recently, Klingner et al. [2008] reported on a study that involved 
cognitive load estimation using remote eye tracking in front of a 
computer screen using the monoscopic Tobii 1750 device. The 
change in cognitive load was caused by the introduction of tasks 
such as mental multiplication, digit sequence repetition and aural 
vigilance. Lighting conditions were strictly controlled in this ex-
periment. The authors concluded that remote eye tracking is a 
viable way of cognitive load estimation using pupil diameter mea-
surement. Building partly on the results of this work we use a 
remote eye tracker in a driving simulator to estimate the cognitive 
load. While we do not explicitly control lighting conditions, the 
brightness of the simulated world (road surface, sky, vegetation, 
etc.) varied less than ±5% from the average brightness along the 
simulated roads. 

3 Experimental setup 

We hypothesize that human multi-threaded spoken interactions 
can provide insight into how to design interfaces for spoken hu-
man-computer interactions [Shyrokov 2010]. In multi-threaded 
dialogues conversants switch between individual dialogue threads 
and these threads may overlap in time. We are especially interest-
ed in multi-threaded dialogues when one of the conversants is 
involved in a manual-visual task, e.g. driving. Thus, in our expe-
riment pairs of subjects are engaged in two spoken tasks and one 
of the subjects (the driver) also operates a simulated vehicle. One 
spoken task is the ongoing task and it is periodically interrupted 
by another spoken task. The interruptions force subjects to switch 
between different dialogue threads. We track the pupillometric 
and driving performance measures of the driver’s cognitive load. 

3.1 Equipment 

Two subjects (driver and dispatcher) participated in each experi-
ment (see Figure 1). They communicated using headphones and 
microphones. Their communication was supervised by the expe-
rimenter and synchronously recorded as a 44100 Hz mono signal.  

The driver operated a high-fidelity driving simulator (DriveSafety 
DS-600c) with a 180º field of view, realistic sounds and vibra-
tions, a full-width car cab and a tilting motion platform that simu-
lates acceleration and braking effects. We recorded pupillometric 
data using a SeeingMachines faceLab 4.6 stereoscopic eye tracker 
mounted on the dashboard in front of the driver. 

3.2 Method 

3.2.1 Participants 
The experiment was completed by 32 participants (16 pairs) be-
tween the ages of 18 and 38 (the average age was 24). Nine par-
ticipants were female. Subjects were recruited through advertise-
ments and received $20 in compensation.  

3.2.2 Driving (primary) and spoken tasks 
The primary task of the drivers was to follow a vehicle while 
driving responsibly. They drove on two-lane, 7.2 m wide roads in 
daylight. The lead vehicle traveled at 89 km/h (55mph) and it was 
positioned 20 meters in front of the subject. There was also a ve-
hicle 20 meters behind the subject’s car. No other traffic was 
present on the road. The roads consisted of six straight and six 
curvy road segments with straight and curvy segments alternating.  

Our ongoing spoken task was a parallel version of twenty ques-
tions (TQ). In TQ, the questioner tries to guess a word the ans-
werer has in mind. The questioner can only ask yes/no questions, 
until she is ready to guess the word. In our version, the two con-
versants switch roles after each question-answer pair is com-
pleted. Words to guess were limited to a list of household items 
(hair dryer, refrigerator, TV, etc.). We trained participants to use a 
question tree in order to guess the objects. The words to be 
guessed were presented to the subjects visually. We showed 
words to the driver just above the dashboard which minimizes 
interference with driving. We told subjects that there was a time 
limit to finish a game, and we enforced this time limit. 

Our interrupting task was a version of the last letter word game 
(LL). In our version of this game a participant utters a word that 
starts with the last vowel or consonant of the word uttered by the 
other participant. For example, the first participant might say, 
“page” and the second says “earn” or “gear.” Subjects had 30 

 
Figure 1 Driver and dispatcher. 



seconds to name three words each. After completing this task they 
resumed the TQ game. Subjects played one TQ game and were 
interrupted by one LL game per curvy and straight road segment. 

3.2.3 Design 
We conducted a within-subjects factorial design experiment with 
the part of the spoken interaction as our primary variable, St_part. 
We split the spoken interaction into three parts: 1) the beginning 
of the twenty questions game (st_part = TQ1) which goes on 
before the conversants switch from TQ to the interrupting task, 2) 
the interrupting last letter game (st_part = LL) and 3) the comple-
tion of the twenty questions game (st_part = TQ2). In this paper 
we only consider data from interactions on curvy road segments. 
We evaluate the following three dependent variables. 

Standard driving performance measures. In this paper we look at 
the variances of lane position and steering wheel angle. We calcu-
late both as the average of variances for the six curvy road seg-
ments. One average is found for each of the three parts of the 
spoken interaction. Lane position refers to the position of the cen-
ter of the simulated car and is measured in meters. A large va-
riance in lane position is a sign of poor driving performance, since 
it means that the participant cannot keep the vehicle on a steady 
path. Steering wheel angle is measured in degrees. Steering wheel 
angle variance can be used as a relative measure of driving per-
formance when comparing the performance of multiple partici-
pants on road segments of the same type. A higher variance is an 
indication of increased effort to remain in lane. 

Pupillometry. We analyze the commonly used mean pupil diame-
ter change (MPDC), which is calculated as the average for the six 
curvy road segments of the difference between the mean pupil 
diameter in a given curvy segment and the overall mean pupil 
diameter for a given subject. The overall mean is subtracted from 
the segment mean in order to compare results between subjects 
with different pupil sizes.  

Next we look at how the driver’s cognitive load changes during 
LL. In LL the interaction between driver and dispatcher can be 
divided into driver turns and dispatcher turns. During the driver’s 
turn the driver’s attention is divided between driving and the LL 
game, as she has to think of a word to utter and then has to utter 
the word. During most of the dispatcher’s turn the driver can con-
centrate on driving and only has to pay attention to the LL game 
when the dispatcher utters a word. We hypothesize that this inte-
raction pattern will result in larger driver cognitive load during the 
driver’s turn than during the dispatcher’s turn. Figure 2 shows a 
sequence of pupil diameter measurements demonstrating this 
phenomenon. While the driver is thinking and then speaking her 
pupil is generally dilating, indicating a possible increase in cogni-
tive load. Conversely, while the dispatcher is thinking and speak-
ing the driver’s pupil is generally contracting.  

 
Figure 2 Example time diagram of pupil diameter change 

during a last letter game (LL). 

To evaluate cognitive load changes in LL we conducted a within-
subjects factorial design experiment with the turn as our primary 
variable, Turn. We evaluate the three dependent variables from 
above as well as the new mean pupil diameter change rate 
(MPDCR). MPDCR is the average for the six curvy segments of 
the mean value of the first difference (which is the discrete-time 
equivalent of the first derivative) of the pupil diameter for a par-
ticipant’s turns. A positive MPDCR indicates that on average the 
pupil dilated for that subject’s turns (possibly due to increased 
driver cognitive load) while a negative value signifies pupil con-
traction. Note that, in evaluating cognitive load changes in LL, the 
other three dependent variables were also calculated using means 
for participant turns in curvy segments.  

4 Results and Discussion 

We performed a series of repeated measured ANOVAs for the 
first three dependent variables with st_part as the independent 
variable (Figures 3 and 4). We found statistically significant dif-
ferences in steering wheel variance (F(2,30)=25.0, p<.001) while 
performing different parts of the spoken tasks (TQ1, LL and 
TQ2). Post hoc pair-wise comparisons also show differences be-
tween all levels (p<.006). The differences in lane position va-
riance are also statistically significant (F(2,30)=10.0, p<.001). 
Post hoc comparisons show significance between TQ1 and LL 
(p<.002), TQ1 and TQ2 (p<.007) but not between LL and TQ2 
(p<.175). Note that on average TQ1, LL and TQ2 took about 22, 
30 and 45 seconds to complete respectively. 

 
Figure 3 Driving performance (with standard error). 

Similar to Schwalm et al. [2008] we found that performance and 
physiological data largely agree: in our experiment both the driv-
ing performance data and the physiological (pupillometric) data 
indicate that the driver’s cognitive load is lowest during TQ1. 
Specifically, MPDC was significantly different between TQ1, LL 
and TQ2 (F(2,30)=15.6, p<.001). In post hoc comparisons MPDC 
was significantly different between TQ1 and LL (p<.001) as well 
as between TQ1 and TQ2 (p<.001), but not between LL and TQ2 
(p<.47). Note that in contrast to Recarte and Nunes [2000] our 
cognitive load measures were significantly different for different 
secondary tasks (TQ and LL).  

  
Figure 4 Mean pupil diameter change (with standard error). 
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Statistical analysis also confirmed that the pattern in Figure 2 is 
not an isolated incident. MPDC during LL, shown in Figure 5, 
was significantly larger during the driver’s turn compared to the 
dispatcher’s turn (F(1,15)=59.69, p<.001). Similarly, MPDCR 
shows that during the driver’s turns, the driver’s pupil diameter 
was increasing, and it was decreasing during the dispatcher’s 
turns (F(1,15)=14.37, p<.002). Thus, both MPDC and our newly 
introduced MPDCR appear to be valuable tools in detecting rapid 
changes in cognitive load. This is in contrast to the two driving 
performance measures, which were not significantly different 
between driver and dispatcher turns during LL. Driving perfor-
mance is too coarse of a measure and does not neatly follow rapid 
changes in cognitive load. Note that on average both driver and 
dispatcher turns took about 4.6 seconds to complete. 

 
Figure 5 Pupillometric measures during LL (with standard 

error). 

5 Conclusion 

Our results show correspondence between two driving perfor-
mance measures and the MPDC under our experimental condi-
tions. We suggest that this correspondence is due to convergence 
of physiological and performance measures of cognitive load. 
Thus we expect that remote eye tracking is a viable way of cogni-
tive load estimation in a simulated driving environment. Our re-
sults also indicate that the MPDCR shows promise as a pupillo-
metric measure of cognitive load. We found it to be a sensitive 
measure of changes in cognitive load. We expect that this measure 
might be especially useful when observing rapid changes in cog-
nitive load. For such changes the average pupil size might not 
change significantly between different tasks, but the first differ-
ence might. Finally, our results indicate that both MPDC and 
MPDCR are finer measures of cognitive load in a driving simula-
tor than variances of lane position and steering wheel angle. 
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